Energy Storage Science and Technology ›› 2018, Vol. 7 ›› Issue (4): 607-617.doi: 10.12028/j.issn.2095-4239.2018.0060
Previous Articles Next Articles
XIONG Fan, ZHANG Weixin, YANG Zeheng, CHEN Fei, WANG Tongzhen, CHEN Zhangxian
Received:
2018-04-12
Revised:
2018-05-13
Online:
2018-07-01
Published:
2018-06-19
CLC Number:
XIONG Fan, ZHANG Weixin, YANG Zeheng, CHEN Fei, WANG Tongzhen, CHEN Zhangxian. Research progress on cathode materials for high energy density lithium ion batteries[J]. Energy Storage Science and Technology, 2018, 7(4): 607-617.
[1] 吴宇平, 万春荣. 锂离子二次电池[M]. 北京:化学工业出版社, 2002:336-349. WU Y P, WAN C R. Lithium ion secondary battery[M]. Beijing:Chemical Industry Press, 2002:336-349. [2] YUAN L X, WANG Z H, ZHANG W X, et al. Development and challenges of LiFePO4 cathode material for lithium-ion batteries[J]. Energy & Environmental Science, 2011, 4(2):269-284. [3] ZHONG G B, WANG Y Y, ZHANG Z C, et al. Effects of Al substitution for Ni and Mn on the electrochemical properties of LiNi0.5 Mn1.5O4[J]. Electrochimica Acta, 2011, 56(18):6554-6561. [4] 黄震雷, 武斌, 王永庆, 等. 锂离子电池正极材料产业化技术进展[J]. 储能科学与技术, 2015, 4(6):537-545. HUANG Z L, WU B, WANG Y Q, et al. Technology progress of cathode materials for lithium ion batteries[J]. Energy Storage Science and Technology, 2015, 4(6):537-545. [5] 彭佳悦, 祖晨曦, 李泓. 锂电池基础科学问题(Ⅰ)——化学储能电池理论能量密度的估算[J]. 储能科学与技术, 2013, 2(1):55-62. PENG J Y,ZU C X,LI H. Fundamental scientific aspects of lithium batteries(I)——Thermodynamic calculations of theoretical energy densities of chemical energy storage systems[J]. Energy Storage Science and Technology, 2013, 2(1):55-62. [6] LIU Z, YU A, LEE J Y. Synthesis and characterization of LiNi1-x-yCoxMnyO2 as the cathode materials of secondary lithium batteries[J]. Journal of Power Sources, 1999, 81/82(9):416-419. [7] MANTHIRAM A, MURUGAN A, SARKAR A. Nanostructured electrode materials for electrochemical energy storage and conversion[J]. Energy & Environmental Science, 2008, 1:621-638. [8] LIU W, OH P, LIU X, et al. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries[J]. Angewandte Chemie International Edition, 2015, 46(26):4440-4457. [9] MANTHIRAM A, KNIGHTJ C, MYUNG S, et al. Nickel-rich and lithium-rich layered oxide cathodes:Progress and perspectives[J]. Advanced Energy Materials, 2016, 6(1):1-23. [10] 邹邦坤, 丁楚雄, 陈春华. 锂离子电池三元正极材料的研究进展[J]. 中国科学:化学, 2014(7):1104-1115. ZOU B K, DING C X, CHEN C H. Research progress in ternary cathode materials Li(Ni, Co, Mn)O2 for lithium ion batteries[J]. Scientia Sinica Chimica, 2014(7):1104-1115. [11] DUAN J, HU G, CAO Y, et al. Enhanced electrochemical performance and storage property of LiNi0.815Co0.15Al0.035O2 via Al gradient doping[J]. Journal of Power Sources, 2016, 326:322-330. [12] HUANG Z, WANG Z, ZHENG X, et al. Effect of Mg doping on the structural and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials[J]. Electrochimica Acta, 2015, 182:795-802. [13] XUE L, LI Y, XU B, et al. Effect of Mo doping on the structure and electrochemical performances of LiNi0.6Co0.2Mn0.2O2 cathode material at high cut-off voltage[J]. Journal of Alloys & Compounds, 2018, 748:561-568. [14] DIXIT M, SCHIPPER F, KOVACHEVA D, et al. Stabilizing nickel-rich layered cathode materials by a high-charge cation doping strategy:Zirconium-doped LiNi0.6Co0.2Mn0.2O2[J]. Journal of Materials Chemistry A, 2016, 4(41):16073-16084. [15] LI L, WANG Z X, LIU Q C, et al. Effects of chromium on the structural, surface chemistry and electrochemical of layered LiNi0.8-xCo0.1Mn0.1CrxO2[J]. Electrochimica Acta, 2012, 77(9):89-96. [16] PENG Y, WANG Z, GUO H, et al. A low temperature fluorine substitution on the electrochemical performance of layered LiNi0.8Co0.1Mn0.1O2-zFz, cathode materials[J]. Electrochimica Acta, 2013, 92(1):1-8. [17] XIONG X, WANG Z, GUO H, et al. Enhanced electrochemical properties of lithium-reactive V2O5 coated on the LiNi0.8Co0.1Mn0.1O2 cathode material for lithium ion batteries at 60℃[J]. Journal of Materials Chemistry A, 2012, 1(4):1284-1288. [18] JUN L, QING P, WEIYANG W, et al. Nanoscale coating of LiMO2 (M=Ni, Co, Mn) nanobelts with Li+-conductive Li2TiO3:Toward better rate capabilities for Li-ion batteries[J]. Journal of the American Chemical Society, 2013, 135(5):1649-1652. [19] SUN Y K, CHEN Z, NOH H J, et al. Nanostructured high-energy cathode materials for advanced lithium batteries[J]. Nature Materials, 2012, 11(11):942-947. [20] LIM B, YOON S, PARK K, et al. Advanced concentration gradient cathode material with two-slope for high-energy and safe lithium batteries[J]. Advanced Functional Materials, 2015, 25(29):4673-4680. [21] YANG Z H, LU J B, BIAN D C, et al. Stepwise co-precipitation to synthesize LiNi1/3Co1/3Mn1/3O2 one-dimensional hierarchical structure for lithium ion batteries[J]. Journal of Power Sources, 2014, 272:144-151. [22] 夏青, 赵俊豪, 王凯, 等. 基于分级共沉淀法制备锂离子电池LiNi0.5Co0.2Mn0.3O2正极材料[J]. 化工学报, 2017, 68(3):1239-1246. XIA Q, ZHAO J H, WANG K, et al. Synthesis and characterization of LiNi0.5Co0.2Mn0.3O2 cathode materials by stepwise co-precipitation[J]. Journal of Chemical Industry and Engineering(China), 2017, 68(3):1239-1246. [23] LU Z H, MACNEIL D D, DAHN J R. Layered cathode materials Li[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2 for lithium-ion batteries[J]. Electrochemical and Solid-State Letters, 2001, 7(12):A503-A506. [24] THACKERAY M M, KANG S H, JOHNSON C S, et al. Li2MnO3-stabilized LiMO2 (M=Mn, Ni, Co) electrodes for lithium-ion batteries[J]. Journal of Materials Chemistry, 2007, 17(30):3112-3125. [25] JARVIS K A, DENG Z, ALLARD L F, et al. Atomic structure of a lithium-rich layered oxide material for lithium-ion batteries:Evidence of a solid solution[J]. Chemistry of Materials, 2011, 23(16):3614-3621. [26] LEE S H, MOON J S, LEE M S, et al. Enhancing phase stability and kinetics of lithium-rich layered oxide for an ultra-high performing cathode in Li-ion batteries[J]. Journal of Power Sources, 2015, 281:77-84. [27] GAO J, KIM J, MANTHIRAM A. High capacity Li[Li0.2Mn0.54Ni0.13 Co0.13] O2-V2O5 composite cathodes with low irreversible capacity loss for lithium ion batteries[J]. Electrochemistry Communications, 2009, 11(1):84-86. [28] ZHENG Y, CHEN L, SU Y F, et al. An interfacial framework for breaking through the Li-ion transport barrier of Li-rich layered cathode materials[J]. Journal of Materials Chemistry A, 2017, 5(46):24292-24298. [29] WANG Q Y, LIU J, MURUGAN A V, et al. High capacity double-layer surface modified Li[Li0.2Mn0.54Ni0.13Co0.13] O2 cathode with improved rate capability[J]. Journal of Materials Chemistry, 2009, 19(28):4965-4972. [30] ZHENG J, GU M, XIAO J, et al. Functioning mechanism of AlF3 coating on the Li-and Mn-rich cathode materials[J]. Chemistry of Materials, 2014, 26(22):6320-6327. [31] HU E Y, LYU Y C, XIN H L, et al. Explore the effects of microstructural defects on voltage fade of Li-and Mn-rich cathodes[J]. Nano Letters, 2016, 16(10):5999-6007. [32] WU X, CHEN F, JIN Y, et al. Silver-copper nanoalloy catalyst layer for bifunctional air electrodes in alkaline media[J]. ACS Applied Materials & Interfaces, 2015, 7(32):17782-17791. [33] ATES M N, MUKERJEE S, ABRAHAM K M. A Li-rich layered cathode material with enhanced structural stability and rate capability for Li-ion batteries[J]. Journal of the Electrochemical Society, 2014, 161(3):A355-A363. [34] GUO B, ZHAO J H, FAN X M, et al. Aluminum and fluorine co-doping promotes stable and safe lithium-rich layered cathode material[J]. Electrochimica Acta, 2017, 236:171-179. [35] ZUO Y, LI B, JIANG N, et al. A high-capacity O2-type Li-rich cathode material with a single-layer Li2MnO3 superstructure[J]. Advanced Materials, 2018, 30(16):1707255. [36] ZHANG J W, GUO X, YAO S M, et al. Tailored synthesis of Ni0.25Mn0.75CO3 spherical precursors for high capacity Li-rich cathode materials via aurea-based precipitation method[J]. Journal of Power Sources, 2013, 238:245-250. [37] MA G, LI S, GUO B, et al. A general and mild approach to controllable preparation of manganese-based micro-and nanostructured bars for high performance lithium-ion batteries[J]. Angewandte Chemie International Edition, 2016, 128(11):3667-3671. [38] AMINE K, TUKAMOTOH, YASUDA H, et al. Preparation and electrochemical investigation of LiMn2-xMexO4, (Me:Ni, Fe, and x=0.5, 1) cathode materials for secondary lithium batteries[J]. Journal of Power Sources, 1997, 68(2):604-608. [39] ZHONG Q, BONAKDARPOUR A, ZHANG M, et al. Synthesis and electrochemistry of LiNixMn2-xO4[J]. Journal of the Electrochemical Society, 1997, 144(1):205-213. [40] YANG J,HAN X, ZHANG X, et al. Spinel LiNi0.5Mn1.5O4 cathode for rechargeable lithiumion batteries:Nano vs micro, ordered phase vs disordered phase[J]. Nano Research, 2013, 6(9):679-687. [41] LI S, MA G, GUO B, YANG Z H, et al. Kinetically-controlled synthesis of LiNi0.5Mn1.5O4 micro/nano-structured hollow spheres as high-rate cathode materials for lithium ion batteries[J]. Industrial & Engineering Chemistry Research, 2016, 55(35):9352-9361. [42] WANG H, BEN L, YU H, et al. Understanding the effects of surface reconstruction on electrochemical cycling performance of spinel LiNi0.5Mn1.5O4 cathode material at elevated temperatures[J]. Journal of Materials Chemistry A, 2016, 5(2):822-834. [43] ARUNKUMAR T A, MANTHIRAM A. Influence of lattice parameter differences on the electrochemical performance of the 5 V spinel LiMn1.5-yNi0.5-zMy+zO4 (M=Li, Mg, Fe, Co, and Zn)[J]. Electrochemical & Solid State Letters, 2005, 8(8):A403-A405. [44] SHIN D W, MANTHIRAM A. Surface-segregated, high-voltage spinel LiMn1.5Ni0.42Ga0.08O4 cathodes with superior high-temperature cyclability for lithium-ion batteries[J]. Electrochemistry Communications, 2011, 13(11):1213-1216. [45] ZHANG Z, HU L, WU H, et al. Fluorinated electrolytes for 5 V lithium-ion battery chemistry[J]. Energy & Environmental Science, 2013, 6(6):1806-1810. |
[1] | Haitao LI, Lingli KONG, Xin ZHANG, Chuanjun YU, Jiwei WANG, Lin XU. The effects of N/P design on the performances of Ni-rich NCM/Gr lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(7): 2040-2045. |
[2] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[3] | Fengrong HE, Qiwen ZHANG, Dechao GUO, Yimin GUO, Xiaodong GUO. Influences of electrode structure on the electrical properties of (NMC+AC)/HC hybrid capacitor [J]. Energy Storage Science and Technology, 2022, 11(7): 2051-2058. |
[4] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[5] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[6] | ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. |
[7] | HAN Junwei, XIAO Jing, TAO Ying, KONG Debin, LV Wei, YANG Quanhong. Compact energy storage: Methodology with graphenes and the applications [J]. Energy Storage Science and Technology, 2022, 11(6): 1865-1873. |
[8] | XIN Yaoda, LI Na, YANG Le, SONG Weili, SUN Lei, CHEN Haosen, FANG Daining. Integrated sensing technology for lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1834-1846. |
[9] | ZHANG Yan, WANG Hai, LIU Zhaomeng, ZHANG Deliu, WANG Jiadong, LI Jianzhong, GAO Xuanwen, LUO Wenbin. Research progress of nickel-rich ternary cathode material ncm for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1693-1705. |
[10] | Biao MA, Chunjing LIN, Lei LIU, Xiaole MA, Tianyi MA, Shiqiang LIU. Venting characteristics and flammability limit of thermal runaway gas of lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(5): 1592-1600. |
[11] | Ce ZHANG, Siwu LI, Jia XIE. Research progress on the prelithiation technology of alloy-type anodes [J]. Energy Storage Science and Technology, 2022, 11(5): 1383-1400. |
[12] | Hengfei LU, Xingwu XU, Shengbin LING, Yongkuan SHEN. Development and application of a LFP pouch cell module [J]. Energy Storage Science and Technology, 2022, 11(5): 1468-1474. |
[13] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
[14] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[15] | Haiyan HU, Shulei CHOU, Yao XIAO. Layered oxide cathode materials based on molecular orbital hybridization for high voltage sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1093-1102. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||