Energy Storage Science and Technology ›› 2018, Vol. 7 ›› Issue (3): 471-482.doi: 10.12028/j.issn.2095-4239.2018.0064
Previous Articles Next Articles
ZHANG Hua, QI Wenbin, JIN Zhou, ZHAO Junnian, WU Yida, ZHAN Yuanjie, CHEN Yuyang, CHEN Bin, YU Hailong, BEN Liubin, LIU Yanyan, HUANG Xuejie
Received:
2018-04-20
Online:
2018-05-01
Published:
2018-04-24
CLC Number:
ZHANG Hua, QI Wenbin, JIN Zhou, ZHAO Junnian, WU Yida, ZHAN Yuanjie, CHEN Yuyang, CHEN Bin, YU Hailong, BEN Liubin, LIU Yanyan, HUANG Xuejie. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2018 to Mar. 31, 2018)[J]. Energy Storage Science and Technology, 2018, 7(3): 471-482.
[1] DUAN J, DONG P, WANG D, et al. A facile structure design of LiNi0.90Co0.07Al0.03O2as advanced cathode materials for lithium ion batteries via carbonation decomposition of NaAl(OH)4 solution[J]. Journal of Alloys and Compounds, 2018, 739:335-344. [2] GENT WE, LIM K, LIANG Y, et al. Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides[J]. Nature Communications, 2017, 8:doi:10.1038/s41467-017-02041-x. [3] BI Z, WU J, YANG S, et al. In situ probing behaviors of single LiNiO2 nanoparticles by merging CAFM and AM-FM techniques[J]. Nanoscale, 2018, 10(6):2916-2922. [4] LI X, QIAO Y, GUO S, et al. Direct visualization of the reversible O2-/O- redox process in Li-rich cathode materials[J]. Advanced Materials (Deerfield Beach, Fla.), 2018:doi:10.1002/adma. 201705197. [5] NOWAK S M. The role of cations on the performance of lithium ion batteries:A quantitative analytical approach[J]. Accounts of Chemical Research, 2018, 51(2):265-272. [6] ARMSTRONG A R, PATERSON A J, DUPRE N, et al. Structural evolution of layered LixMnyO2:Combined neutron, NMR, and electrochemical study[J]. Chemistry of Materials, 2007, 19(5):1016-1023. [7] PEI Y, CHEN Q, XIAO Y C, et al. Understanding the phase transitions in spinel-layered-rock salt system:Criterion for the rational design of LLO/spinel nanocomposites[J]. Nano Energy, 2017, 40:566-575. [8] ZUO Y, LI B, JIANG N, et al. A high-capacity O2-type Li-rich cathode material with a single-layer Li2MnO3 superstructure[J]. Advanced Materials (Deerfield Beach, Fla.), 2018:doi:10.1002/adma.201707255. [9] DUDA L K. Oxygen redox reactions in Li ion battery electrodes studied by resonant inelastic X-ray scattering[J]. Journal of Electron Spectroscopy and Related Phenomena, 2017, 221:79-87. [10] ASSAT G, FOIX D, DELACOURT C, et al. Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes[J]. Nature Communications, 2017, 8:doi:10.1038/s41467-017-02291-9. [11] WANG J, WU H, CUI Y, et al. A new class of ternary compound for lithium-ion battery:From composite to solid solution[J]. ACS Applied Materials & Interfaces, 2018, 10(6):5125-5132. [12] SHI J L, XIAO D D, GE M, et al. High-capacity cathode material with high voltage for Li-ion batteries[J]. Advanced Materials, 2018, 30(9):doi:https://doi.org/10.1002/adma.201705575. [13] ITOH T H. Electrochemical cycling effect on structural parameters and electron density of Li1-xNi0.5Mn1.5O4 using synchrotron X-ray analyses[J]. Physica B-Condensed Matter, 2018, 532:64-70. [14] KUENZEL M, BRESSER D, DIEMANT T, et al. Complementary strategies toward the aqueous processing of high-voltage LiNi0.5Mn1.5O4 lithium-ion cathodes[J]. ChemSusChem, 2018, 11(3):562-573. [15] LIU Y, LIU J, WANG J, et al. Formation of size-dependent and conductive phase on lithium iron phosphate during carbon coating[J]. Nature Communications, 2018, 9:929. [16] AMIN K, MENG Q, AHMAD A, et al. A carbonyl compound-based flexible cathode with superior rate performance and cyclic stability for flexible lithium-ion batteries[J]. Advanced Materials, 2018, 30(4):1703868. [17] CABANA J, KWON B L. Mechanisms of degradation and strategies for the stabilization of cathode-electrolyte interfaces in Li-ion batteries[J]. Accounts of Chemical Research, 2018, 51(2):299-308. [18] PETRONICO A, BASSETT K L, NICOLAU B G, et al. Toward a four-electron redox quinone polymer for high capacity lithium ion storage[J]. Advanced Energy Materials, 2018, 8(5):doi:https://doi.org/10.1002/aenm.201700960. [19] HERNANDEZ G, SALSAMENDI M, MOROZOVA S M, et al. Polyimides as cathodic materials in lithium batteries:Effect of the chemical structure of the diamine monomer[J]. Journal of Polymer Science Part A-Polymer Chemistry, 2018, 56(7):714-723. [20] OGATA K, JEON S, KO D S, et al. Evolving affinity between coulombic reversibility and hysteretic phase transformations in nano-structured silicon-based lithium-ion batteries[J]. Nature Communications. 2018, 9:479. [21] OLSON J Z, JOHANSSON P K, CASTNER D G, et al. Operando sum-frequency generation detection of electrolyte redox products at active Si nanoparticle Li-ion battery interfaces[J]. Chemistry of Materials, 2018, 30(4):1239-1248. [22] AN G H, KIM H H J. Improved ionic diffusion through the mesoporous carbon skin on silicon nanoparticles embedded in carbon for ultrafast lithium storage[J]. ACS Applied Materials&Interfaces, 2018, 10(7):6235-6244. [23] CHEN M, LI B, LIU X, et al. Boron-doped porous Si anode materials with high initial coulombic efficiency and long cycling stability[J]. Journal of Materials Chemistry A, 2018, 6(7):3022-3027. [24] HOROWITZ Y, HAN H L, SOTO F A, et al. Fluoroethylene carbonate as a directing agent in amorphous silicon anodes:Electrolyte interface structure probed by sum frequency vibrational spectroscopy and Ab initio molecular dynamics[J]. Nano Letters, 2018, 18(2):1145-1151. [25] ELIA G J. A SiOx-based anode in a high-voltage lithium-ion battery[J]. ChemElectroChem, 2017, 4(9):2164-2168. [26] HERNANDEZ C R, ETIEMBLE A, DOUILLARD T, et al. A facile and very effective method to enhance the mechanical strength and the cyclability of Si-based electrodes for Li-ion batteries[J]. Advanced Energy Materials, 2018, 8(6):doi:http://doi.org/10.1002/aenm. 201701787. [27] ZOU P, WANG Y, CHIANG S W, et al. Directing lateral growth of lithium dendrites in micro-compartmented anode arrays for safe lithium metal batteries[J]. Nature Communications, 2018, 9:doi:10.1038/s467-018-02888-8. [28] LI H H, FAN H H, FAN C Y, et al. Construction of electrical "highway" to significantly enhance the redox kinetics of normal hierarchical structured materials of MnO[J]. Journal of Materials Chemistry A, 2018, 6(4):1663-1670. [29] KIM J Y, KIM A Y, LIU G, et al. Li4SiO4-based artificial passivation thin film for improving interfacial stability of Li metal anodes[J]. ACS Applied Materials&Interfaces, 2018, doi:10.1021/acsami. 7b18997. [30] JIN C, SHENG O, LU Y, et al. Metal oxide nano particles induced step-edge nucleation of stable Li metal anode working under an ultrahigh current density of 15 mA·cm-2[J]. Nano Energy, 2018, 45:203-209. [31] WANG D, ZHANG W, DREWETT N E, et al. Exploiting anti-T-shaped graphene architecture to form low tortuosity, sieve-like interfaces for high-performance anodes for Li-based cells[J]. ACS Central Science, 2018, 4(1):81-88. [32] CORTES F J Q, BOEBINGER M G, XU M, et al. Operando synchrotron measurement of strain evolution in individual alloying anode particles within lithium batteries[J]. ACS Energy Letters, 2018, 3(2):349-355. [33] PARK M G, LEE D H, JUNG H, et al. Sn-based nanocomposite for Li-ion battery anode with high energy density, rate capability, and reversibility[J]. ACS Nano, 2018, doi:10.1021/acsnan0.8b00586. [34] HU R, ZHANG H, LU Z, et al. Unveiling critical size of coarsened Sn nanograins for achieving high round-trip efficiency of reversible conversion reaction in lithiated SnO2 nanocrystals[J]. Nano Energy, 2018, 45:255-265. [35] HAN J, KONG D, LV W, et al. Caging tin oxide in three-dimensional graphene networks for superior volumetric lithium storage[J]. Nature Communications, 2018, 9:doi:10.1038/s41467-017-02808-2. [36] ZHANG Z, CHEN S, YANG J, et al. Interface Re-engineering of Li10GeP2S12 electrolyte and lithium anode for all-solid-state lithium batteries with ultralong cycle life[J]. ACS Applied Materials& Interfaces, 2018, 10(3):2556-2565. [37] JIN S, SUN Z, GUO Y, et al. High areal capacity and lithium utilization in anodes made of covalently connected graphite microtubes[J]. Advanced Materials, 2017, 29(38):doi:https://doi.org/10.1002/adma.201700783. [38] KATO Y, SHIOTANI S, MORITA K, et al. All-solid-state batteries with thick electrode configurations[J]. The Journal of Physical Chemistry Letters, 2018, 9(3):607-613. [39] YAN J, YU JDING B. Mixed ionic and electronic conductor for Li-metal anode protection[J]. Advanced Materials, 2018, 30(7):doi:https://doi.org/10.1002/adma.201705105. [40] XU R C, XIA X H, LI S H, et al. All-solid-state lithium-sulfur batteries based on a newly designed Li7P2.9Mn0.1S10.7I0.3 superionic conductor[J]. Journal of Materials Chemistry A, 2017, 5(13):6310-6317. [41] DUAN H, YIN Y X, SHI Y, et al. Dendrite-free Li-metal battery enabled by a thin asymmetric solid electrolyte with engineered layers[J]. Journal of the American Chemical Society, 2018, 140(1):82-85. [42] JOOS B, VRANKEN T, MARCHAL W, et al. Eutectogels:A new class of solid composite electrolytes for Li/Li-ion batteries[J]. Chemistry of Materials, 2018, 30(3):655-662. [43] NOJABAEE M, CHENG H W, VALTINER M, et al. interfacial layering and screening behavior of glyme-based lithium electrolytes[J]. Journal of Physical Chemistry Letters, 2018, 9(3):577-582. [44] SONG A Y, XIAO Y, TURCHENIUK K, et al. Protons enhance conductivities in lithium halide hydroxide/lithium oxyhalide solid electrolytes by forming rotating hydroxy groups[J]. Advanced Energy Materials, 2018, 8(3):doi:https://doi.org/10.1002/aenm.201700971. [45] CHEN C, LI Q, LI Y, et al. Sustainable interfaces between Si anodes and garnet electrolytes for room-temperature solid-state batteries[J]. ACS Applied Materials&Interfaces, 2018, 10(2):2185-2190. [46] STANJE B, RETTENWANDER D, BREUER S, et al. Solid electrolytes:Extremely fast charge carriers in garnet-type Li6La3ZrTaO12 single crystals[J]. Annalen Der Physik, 2017, 529(12):doi:https://doi.org/10.1002/andp.20170140. [47] WANG B, ZHAO Y, BANIS M N, et al. Atomic layer deposition of lithium niobium oxides as potential solid-state electrolytes for lithium-ion batteries[J]. ACS Applied Materials&Interfaces, 2018, 10(2):1654-1661. [48] BAE J, LI Y, ZHANG J, et al. A 3D nanostructured hydrogel-framework-derived high-performance composite polymer lithium-ion electrolyte[J]. Angewandte Chemie-International Edition, 2018, 57(8):2096-2100. [49] KIM S, TOYAMA N, OGUCHI H, et al. Fast lithium-ion conduction in atom-deficient closo-type complex hydride solid electrolytes[J]. Chemistry of Materials, 2018, 30(2):386-391. [50] TRON A, NOSENKO A, PARK Y D, et al. Enhanced ionic conductivity of the solid electrolyte for lithium-ion batteries[J]. Journal of Solid State Chemistry, 2018, 258:467-470. [51] CHOI H, KIM H W, KIM J K, et al. Nanocomposite quasi-solid-state electrolyte for high-safety lithium batteries[J]. Nano Research, 2017, 10(9):3092-3102. [52] KIM S H, CHOI K H, CHO S J, et al. Flexible/shape-versatile, bipolar all-solid-state lithium-ion batteries prepared by multistage printing[J]. Energy&Environmental Science, 2018, 11(2):321-330. [53] WU B, LOCHALA J, TAVERNE T, et al. The interplay between solid electrolyte interface (SEI) and dendritic lithium growth[J]. Nano Energy, 2017, 40:34-41. [54] WANG F, SUO L, LIANG Y, et al. Spinel LiNi0.5Mn1.5O4 cathode for high-energy aqueous lithium-ion batteries[J]. Advanced Energy Materials, 2017, 7(8):doi:https://doi.org/10.1002/aenm.201600922. [55] ADAMS B D, CARINO E V, CONNELL JG, et al. Long term stability of Li-S batteries using high concentration lithium nitrate electrolytes[J]. Nano Energy, 2017, 40:607-617. [56] SUO L, OH D, LIN Y, et al. How solid-electrolyte interphase forms in aqueous electrolytes[J]. Journal of the American Chemical Society, 2017, 139(51):18670-18680. [57] LI Y, VEITH G M, BROWNING K L, et al. Lithium malonatoborate additives enabled stable cycling of 5 V lithium metal and lithium ion batteries[J]. Nano Energy, 2017, 40:9-19. [58] SUO L, XUE W, GOBET M, et al. Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(6):1156-1161. [59] GOUVERNEUR M, SCHMIDT FSCHONHOFF M. Negative effective Li transference numbers in Li salt/ionic liquid mixtures:Does Li drift in the "Wrong" direction?[J]. Physical Chemistry Chemical Physics:PCCP, 2018, 20(11):7470-7478. [60] ZHANG T, YANG J, ZHU J, et al. A lithium-ion oxygen battery with a Si anode lithiated in situ by a Li3N-containing cathode[J]. Chemical Communications, 2018, 54(9):1069-1072. [61] DUTTA A, WONG R A, PARK W, et al. Nanostructuring one-dimensional and amorphous lithium peroxide for high round-trip efficiency in lithium-oxygen batteries[J]. Nature Communications, 2018, 9:doi:10.1038/s41467-017-02727-2. [62] QIN L, ZHAI D, LV W, et al. A high-performance lithium ion oxygen battery consisting of Li2O2 cathode and lithiated aluminum anode with nafion membrane for reduced O2 crossover[J]. Nano Energy, 2017, 40:258-263. [63] WU S, QIAO Y, YANG S, et al. Clean electrocatalysis in a Li2O2 redox-based Li-O2 battery built with a hydrate-melt electrolyte[J]. ACS Catalysis, 2018, 8(2):1082-1089. [64] YU W, WANG H, HU J, et al. Molecular sieve induced solution growth of Li2O2 in the Li-O2 battery with largely enhanced discharge capacity[J]. ACS Applied Materials&Interfaces, 2018, 10(9):7989-7995. [65] LACEY S D, KIRSCH D J, L I Y, et al. Extrusion-based 3D printing of hierarchically porous advanced battery electrodes[J]. Advanced Materials (Deerfield Beach, Fla.), 2018, doi:https://doi.org/10.1002/adma.201705651. [66] ADAMS B D, ZHENG J, REN X, et al. Accurate determination of coulombic efficiency for lithium metal anodes and lithium metal batteries[J]. Advanced Energy Materials, 2018, 8(7):doi:https://doi.org/10.1002/aenm.201702097. [67] CHEN Y, GAO X, JOHNSON L R, et al. Kinetics of lithium peroxide oxidation by redox mediators and consequences for the lithium-oxygen cell[J]. Nature Communications, 2018, 9:doi:10.1038/zs41467-018-03204-0. [68] LIU M, REN Y X, JIANG H R, et al. An efficient Li2S-based lithium-ion sulfur battery realized by a bifunctional electrolyte additive[J]. Nano Energy, 2017, 40:240-247. [69] CHEN Y, ZHANG H, XU W, et al. Polysulfide stabilization:A pivotal strategy to achieve high energy density Li-S batteries with long cycle life[J]. Advanced Functional Materials, 2018, 28(8):doi:https://doi.org/10.1002/adfm.201704987. [70] BENITEZ A, DI LECCE D, ELIA G A, et al. A new lithium-ion battery using 3D-array nanostructured graphene-sulfur cathode and silicon oxide-based anode[J]. ChemSusChem, 2018, doi:https://doi.org/10.1002/cssc.201800242. [71] CARBONE L, CONEGLIAN T, GOBET M, et al. A simple approach for making a viable, safe, and high-performances lithium-sulfur battery[J]. Journal of Power Sources, 2018, 377:26-35. [72] LI L, PASCAL T A, CONNELL J G, et al. Molecular understanding of polyelectrolyte binders that actively regulate ion transport in sulfur cathodes[J]. Nature Communications, 2017, 8:doi:10.1038/s41467-017-02410-6. [73] HUANG F, MA G, WEN Z, et al. Enhancing metallic lithium battery performance by tuning the electrolyte solution structure[J]. Journal of Materials Chemistry A, 2018, 6(4):1612-1620. [74] LI G, HUANG Q, HE X, et al. Self-formed hybrid interphase layer on lithium metal for high-performance lithium-sulfur batteries[J]. ACS Nano, 2018, doi:10.1021/acsnano.7b08035. [75] WU F, CHEN S, SROT V, et al. A sulfur-limonene-based electrode for lithium-sulfur batteries:High-performance by self-protection[J]. Advanced Materials (Deerfield Beach, Fla.), 2018, doi:https://doi. org/10.1002/adma.201706643. [76] CHUNG S H, MANTHIRAM A. Rational design of statically and dynamically stable lithium-sulfur batteries with high sulfur loading and low electrolyte/sulfur ratio[J]. Advanced Materials, 2018, 30(6):doi:https://doi.org/10.1002/adma.201705951. [77] LI J, LIANG X, LIOU F, et al. Macro-/micro-controlled 3D lithium-ion batteries via additive manufacturing and electric field processing[J]. Scientific Reports, 2018, 8:doi:10.1038/s41598-018-20329-w. [78] JUNG W K, BAEK C, KIM J H, et al. A highly-aligned lamellar structure of ice-templated LiFePO4 cathode for enhanced rate capability[J]. Materials&Design, 2018, 139:89-95. [79] STROE D I, SWIERCZYNSKI M, KAER S K, et al. Degradation behavior of lithium-ion batteries during calendar ageing-the case of the internal resistance increase[J]. IEEE Transactions on Industry Applications, 2018, 54(1):517-525. [80] INOISHI A, NISHIO A, YOSHIOKA Y, et al. A single-phase all-solid-state lithium battery based on Li1.5Cr0.5Ti1.5(PO4)3 for high rate capability and low temperature operation[J]. Chemical communications (Cambridge, England). 2018:doi:10.1039/c8cc00734A. [81] YAMAMOTO M, TERAUCHI Y, SAKUDA A, et al. Binder-free sheet-type all-solid-state batteries with enhanced rate capabilities and high energy densities[J]. Scientific Reports, 2018, 8:doi:10.1038/s41598-018-19398-8. [82] WEI T S, AHN B Y, GROTTO J, et al. 3D printing of customized Li-ion batteries with thick electrodes[J]. Advanced Materials (Deerfield Beach, Fla.), 2018:e1703027-e1703027. [83] YU Y S, FARMAND M, KIM C, et al. Three-dimensional localization of nanoscale battery reactions using soft X-ray tomography[J]. Nature Communications, 2018, 9:doi:10.1038/s41467-018-03401-x. [84] JO C, HWANG J, LIM W G, et al. Multiscale phase separations for hierarchically ordered macro/mesostructured metal oxides[J]. Advanced Materials, 2018, 30(6):doi:https://doi.org/10.1002/adma.201703829. [85] TAKAMATSU D, YONEYAMA A, ASARI Y, et al. Quantitative Visualization of salt concentration distributions in lithium-ion battery electrolytes during battery operation using X-ray phase imaging[J]. Journal of the American Chemical Society, 2018, 140(5):1608-1611. [86] ALI S, TAN C, WAQAS M, et al. Highly efficient PVDF-HFP/colloidal alumina composite separator for high-temperature lithium-ion batteries[J]. Advanced Materials Interfaces, 2018, 5(5):doi:https://doi.org/10.1002/admi.201701147. [87] HAUSBRAND R, CHERKASHININ G, FINGERLE M, et al. Surface and bulk properties of Li-ion electrodes-A surface science approach[J]. Journal of Electron Spectroscopy and Related Phenomena, 2017, 221:65-78. [88] SHANG T, WEN Y, XIAO D, et al. Atomic-scale monitoring of electrode materials in lithium-ion batteries using in situ transmission electron microscopy[J]. Advanced Energy Materials, 2017, 7(23):doi:https://doi.org/10.1002/aenm.201700709 [89] ZHU C, USISKIN R E, YU Y, et al. The nanoscale circuitry of battery electrodes[J]. Science, 2017, 358(6369):doi:10.1126/science.aa02808. [90] CHU Z, FENG X, LU L, et al. Non-destructive fast charging algorithm of lithium-ion batteries based on the control-oriented electrochemical model[J]. Applied Energy, 2017, 204:1240-1250. [91] GUHA APATRA A. State of health estimation of lithium-ion batteries using capacity fade and internal resistance growth models[J]. IEEE Transactions on Transportation Electrification, 2018, 4(1):135-146. [92] HESSE H C, SCHIMPE M, KUCEVIC D, et al. lithium-ion battery Storage for the grid-A review of stationary battery storage system design tailored for applications in modern power grids[J]. Energies, 2017, 10(12):doi:10.3390/en/0122107. [93] NOELLE D J, WANG M, LE A V, et al. Internal resistance and polarization dynamics of lithium-ion batteries upon internal shorting[J]. Applied Energy, 2018, 212:796-808. [94] HU E, WANG X, YU X, et al. Probing the complexities of structural changes in layered oxide cathode materials for Li-ion batteries during fast charge-discharge cycling and heating[J]. Accounts of Chemical Research, 2018, 51(2):290-298. [95] DINKELACKER F, MARZAK P, YUN J, et al. A multistage mechanism of lithium intercalation into graphite anodes in presence of the solid electrolyte interface[J]. ACS Applied Materials& Interfaces, 2018:doi:10.1021/acsam.7b18738 [96] HUANG BFRAPPER G. Pressure-induced polymerization of CO2 in lithium-carbon dioxide phases[J]. Journal of the American Chemical Society, 2018, 140(1):413-422. [97] TAKENAKA N, FUJIE T, BOUIBES A, et al. Microscopic formation mechanism of solid electrolyte interphase film in lithium-ion batteries with, highly concentrated electrolyte[J]. Journal of Physical Chemistry C, 2018, 122(5):2564-2571. [98] DAWSON J A, CANEPA P, FAMPRIKIS T, et al. Atomic-scale influence of grain boundaries on Li-ion conduction in solid electrolytes for all-solid-state batteries[J]. Journal of the American Chemical Society, 2018, 140(1):362-368. [99] SINGLE F, LATZ A B. Identifying the mechanism of continued SEI growth[J]. ChemSusChem, 2018:doi:https://doi.org/10.1002/cssc.201800077. [100] WHITTINGHAM M S, SIU CDING J. Can multielectron intercalation reactions be the basis of next generation batteries?[J]. Accounts of Chemical Research, 2018, 51(2):258-264. |
[1] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[2] | Yingwei PEI, Hong ZHANG, Xinghui WANG. Recent advances in the electrolytes of rechargeable zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2075-2082. |
[3] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[4] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[5] | ZHANG Yan, WANG Hai, LIU Zhaomeng, ZHANG Deliu, WANG Jiadong, LI Jianzhong, GAO Xuanwen, LUO Wenbin. Research progress of nickel-rich ternary cathode material ncm for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1693-1705. |
[6] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[7] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
[8] | LI Yitao, SHEN Kaier, PANG Quanquan. Advance in organics enhanced sulfide-based solid-state batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1902-1918. |
[9] | ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. |
[10] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[11] | Honghui WANG, Zeqin WU, Deren CHU. Thermal behavior of lithium titanate based Li ion batteries under slight over-discharging condition [J]. Energy Storage Science and Technology, 2022, 11(5): 1305-1313. |
[12] | Zhicheng CHEN, Zongxu LI, Ling CAI, Yisi LIU. Development status and future prospects of flexible metal-air batteries [J]. Energy Storage Science and Technology, 2022, 11(5): 1401-1410. |
[13] | Maolin FANG, Ying ZHANG, Lin QIAO, Shumin LIU, Zhongqi CAO, Huamin ZHANG, Xiangkun MA. Research progress of iron-chromium flow batteries technology [J]. Energy Storage Science and Technology, 2022, 11(5): 1358-1367. |
[14] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
[15] | Liang FANG, Kai ZHANG, Limin ZHOU. Recent advances and prospects of electrolyte for aluminum ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1236-1245. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||