Energy Storage Science and Technology ›› 2018, Vol. 7 ›› Issue (6): 1069-1081.doi: 10.12028/j.issn.2095-4239.2018.0166
Previous Articles Next Articles
SHEN Min, JIANG Zhimin, LI Nan, CHEN Huichuang, DONG Jingbo, MA Guoqiang
Received:
2018-09-02
Revised:
2018-09-27
Online:
2018-11-01
Published:
2018-10-19
Contact:
10.12028/j.issn.2095-4239.2018.0166
CLC Number:
SHEN Min, JIANG Zhimin, LI Nan, CHEN Huichuang, DONG Jingbo, MA Guoqiang. High safety electrolyte for lithium-ion battery[J]. Energy Storage Science and Technology, 2018, 7(6): 1069-1081.
[1] MAROM R, AMALRAJ S F, LEIFER N, et al. A review of advanced and practical lithium battery materials[J]. Journal of Materials Chemistry, 2011, 21 (27):9938-9954. [2] TOBISHIMA S I, YAMAKI J I. A consideration of lithium cell safety[J]. Journal of Power Sources, 1999, 81:882-886. [3] 胡广侠, 解晶莹. 影响锂离子电池安全性的因素[J]. 电化学, 2002, 8 (3):245-251. HU G X, XIE J Y. Some consideration for lithium-ion cells' safety[J]. Electrochemistry, 2002, 8 (3):245-251. [4] GUO G, LONG B, CHENG B, et al. Three-dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application[J]. Journal of Power Sources, 2010, 195 (8):2393-2398. [5] XIANG J, CHANG C, YUAN L, et al. A simple and effective strategy to synthesize Al2O3-coated LiNi0.8Co0.2O2 cathode materials for lithium ion battery[J]. Electrochemistry Communications, 2008, 10 (9):1360-1363. [6] LIAO P Y, DUH J G, SHEU H S. Structural and thermal properties of LiNi0.6-xMgxCo0.25Mn0.15O2 cathode materials[J]. Journal of Power Sources, 2008, 183 (2):766-770. [7] 杨升, 袁永华. 锂离子电池电解液安全性添加剂探析[J]. 石化技术, 2015, 12:118. YANG S, YUAN Y H. Additive for improving safety of electrolyte of lithium ion battery[J]. Petrochemical Industry Technology, 2015, 12:118. [8] SWART J, ARORA A, MEGERLE M, et al. Methods for measuring the mechanical safety vent pressure of lithium ion battery cells[C]//Proceedings of the Product Safety Engineering Society Symposium, 2006 IEEE, 2006. [9] FENG X, FANG M, HE X, et al. Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry[J]. Journal of Power Sources, 2014, 255:294-301. [10] RICHARD M, DAHN J. Accelerating rate calorimetry study on the thermal stability of lithium intercalated graphite in electrolyte. I. Experimental[J]. Journal of the Electrochemical Society, 1999, 146 (6):2068-2077. [11] BELHAROUAK I, SUN Y K, LU W, et al. On the safety of the Li4Ti5O12/LiMn2O4 lithium-ion battery system[J]. Journal of the Electrochemical Society, 2007, 154 (12):A1083-A1087. [12] ZHENG S, WANG L, FENG X, et al. Probing the heat sources during thermal runaway process by thermal analysis of different battery chemistries[J]. Journal of Power Sources, 2018, 378:527-536. [13] 郑洪河. 锂离子电池电解质[M]. 北京:化学工业出版社, 2007. ZHENG H H. Lithium-ion battery electrolyte[M]. Beijing:Chemical Industry Press, 2007. [14] XU K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chemical Reviews, 2004, 104 (10):4303-4418. [15] LEWANDOWSKI A, ŚWIDERSKA-MOCEK A. Ionic liquids as electrolytes for Li-ion batteries-An overview of electrochemical studies[J]. Journal of Power Sources, 2009, 194 (2):601-609. [16] LUX S F, SCHMUCK M, APPETECCHI G B, et al. Lithium insertion in graphite from ternary ionic liquid-lithium salt electrolytes:Ⅱ. Evaluation of specific capacity and cycling efficiency and stability at room temperature[J]. Journal of Power Sources, 2009, 192 (2):606-611. [17] ETACHERI V, MAROM R, ELAZARI R, et al. Challenges in the development of advanced Li-ion batteries:A review[J]. Energy & Environmental Science, 2011, 4 (9):3243-3262. [18] CHATTORAJ J, DIDDENS D, HEUER A. Effects of ionic liquids on cation dynamics in amorphous polyethylene oxide electrolytes[J]. The Journal of Chemical Physics, 2014, 140 (2):doi:10.1063/1.4861219. [19] OSADA I, DE VRIES H, SCROSATI B, et al. Ionic-liquid-based polymer electrolytes for battery applications[J]. Angewandte Chemie International Edition, 2016, 55 (2):500-513. [20] DOKKO K, TACHIKAWA N, YAMAUCHI K, et al. Solvate ionic liquid electrolyte for Li-S batteries[J]. Journal of the Electrochemical Society, 2013, 160 (8):A1304-A1310. [21] PARK J W, UENO K, TACHIKAWA N, et al. Ionic liquid electrolytes for lithium-sulfur batteries[J]. The Journal of Physical Chemistry C, 2013, 117 (40):20531-20541. [22] BONHOTE P, DIAS A P, PAPAGEORGIOU N, et al. Hydrophobic, highly conductive ambient-temperature molten salts[J]. Inorganic Chemistry, 1996, 35 (5):1168-1178. [23] TOKUDA H, ISHⅡ K, SUSAN M A, et al. Physicochemical properties and structures of room-temperature ionic liquids. 3. Variation of cationic structures[J]. The Journal of Physical Chemistry B, 2006, 110 (6):2833-2839. [24] SAKAEBE H, MATSUMOTO H, TATSUMI K. Application of room temperature ionic liquids to Li batteries[J]. Electrochimica Acta, 2007, 53 (3):1048-1054. [25] NAKAGAWA H, IZUCHI S, KUWANA K, et al. Liquid and polymer gel electrolytes for lithium batteries composed of room-temperature molten salt doped by lithium salt[J]. Journal of the Electrochemical Society, 2003, 150 (6):A695-A700. [26] 曹辉. 离子液体在锂离子电池中的应用研究[D]. 北京:北京有色金属研究总院, 2013. CAO H. Application of ionic liquid in lithium ion battery[D]. Beijing:General Research Institute for Nonferrous Metals, 2013. [27] EGASHIRA M, OKADA S, YAMAKI J I, et al. The preparation of quaternary ammonium-based ionic liquid containing a cyano group and its properties in a lithium battery electrolyte[J]. Journal of Power Sources, 2004, 138 (1/2):240-244. [28] SATO T, MARUO T, MARUKANE S, et al. Ionic liquids containing carbonate solvent as electrolytes for lithium ion cells[J]. Journal of Power Sources, 2004, 138 (1/2):253-261. [29] LEE J, QUAN N, HWANG J, et al. Ionic liquids containing an ester group as potential electrolytes[J]. Electrochemistry Communications, 2006, 8 (3):460-464. [30] KATAYAMA Y, YUKUMOTO M, MIURA T. Electrochemical intercalation of lithium into graphite in room-temperature molten salt containing ethylene carbonate[J]. Electrochemical and Solid-State Letters, 2003, 6 (5):A96-A97. [31] TAGGOUGUI M, DIAW M, CARR B, et al. Solvents in salt electrolyte:Benefits and possible use as electrolyte for lithium-ion battery[J]. Electrochimica Acta, 2008, 53 (17):5496-5502. [32] SATO K, YAMAZAKI I, OKADA S, et al. Mixed solvent electrolytes containing fluorinated carboxylic acid esters to improve the thermal stability of lithium metal anode cells[J]. Solid State Ionics, 2002, 148 (3/4):463-466. [33] RYOU M H, HAN G B, LEE Y M, et al. Effect of fluoroethylene carbonate on high temperature capacity retention of LiMn2O4/graphite Li-ion cells[J]. Electrochimica Acta, 2010, 55 (6):2073-2077. [34] LIAO L, CHENG X, MA Y, et al. Fluoroethylene carbonate as electrolyte additive to improve low temperature performance of LiFePO4 electrode[J]. Electrochimica Acta, 2013, 87:466-472. [35] KATAYAMA H, ARAI J, AKAHOSHI H. Solvation states and properties of binary mixtures of halogenated cyclic carbonates and a linear carbonate[J]. Journal of Power Sources, 1999, 81:705-708. [36] YAMAKI J I, YAMAZAKI I, EGASHIRA M, et al. Thermal studies of fluorinated ester as a novel candidate for electrolyte solvent of lithium metal anode rechargeable cells[J]. Journal of Power Sources, 2001, 102 (1/2):288-293. [37] ARAI J. A novel non-flammable electrolyte containing methyl nonafluorobutyl ether for lithium secondary batteries[J]. Journal of Applied Electrochemistry, 2002, 32 (10):1071-1079. [38] ARAI J. No-flash-point electrolytes applied to amorphous carbon/Li1+xMn2O4 cells for EV use[J]. Journal of Power Sources, 2003, 119:388-392. [39] ZHANG S S. A review on electrolyte additives for lithium-ion batteries[J]. Journal of Power Sources, 2006, 162 (2):1379-1394. [40] SLOOP S E, KERR J B, KINOSHITA K. The role of Li-ion battery electrolyte reactivity in performance decline and self-discharge[J]. Journal of Power Sources, 2003, 119:330-337. [41] CAMPION C L, LI W, LUCHT B L. Thermal decomposition of LiPF6-based electrolytes for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2005, 152 (12):A2327-A2334. [42] SCHMIDT M, HEIDER U, KUEHNER A, et al. Lithium fluoroalkylphosphates:A new class of conducting salts for electrolytes for high energy lithium-ion batteries[J]. Journal of Power Sources, 2001, 97:557-560. [43] GNANARAJ J, ZINIGRAD E, ASRAF L, et al. On the use of LiPF3 (CF2CF3)3 (LiFAP) solutions for Li-ion batteries. Electrochemical and thermal studies[J]. Electrochemistry Communications, 2003, 5 (11):946-951. [44] XU M, XIAO A, LI W, et al. Investigation of lithium tetrafluorooxalatophosphate as a lithium-ion battery electrolyte[J]. Electrochemical and Solid-State Letters, 2009, 12 (8):A155-A158. [45] QIN Y, CHEN Z, LIU J, et al. Lithium tetrafluoro oxalato phosphate as electrolyte additive for lithium-ion cells[J]. Electrochemical and Solid-State Letters, 2010, 13 (2):A11-A14. [46] HAN J G, PARK I, CHA J, et al. Interfacial architectures derived by lithium difluoro (bisoxalato) phosphate for lithium-rich cathodes with superior cycling stability and rate capability[J]. ChemElectroChem, 2017, 4 (1):56-65. [47] KIM K E, JANG J Y, PARK I, et al. A combination of lithium difluorophosphate and vinylene carbonate as reducible additives to improve cycling performance of graphite electrodes at high rates[J]. Electrochemistry Communications, 2015, 61:121-124. [48] YANG L, ZHANG H, DRISCOLL P F, et al. Six-membered-ring malonatoborate-based lithium salts as electrolytes for lithium ion batteries[J]. ECS Transactions, 2011, 33 (39):57-69. [49] ZHANG S S. An unique lithium salt for the improved electrolyte of Li-ion battery[J]. Electrochemistry Communications, 2006, 8 (9):1423-1428. [50] XU K, LEE U, ZHANG S, et al. Chemical analysis of graphite/electrolyte interface formed in LiBOB-based electrolytes[J]. Electrochemical and Solid-State Letters, 2003, 6 (7):A144-A148. [51] UE M, FUJⅡ T, ZHOU Z-B, et al. Electrochemical properties of Li[CnF2n+1BF3] as electrolyte salts for lithium-ion cells[J]. Solid State Ionics, 2006, 177 (3/4):323-331. [52] DONG Y, DEMEAUX J, ZHANG Y, et al. Improving the performance at elevated temperature of high voltage graphite/LiNi0.5Mn1.5O4 cells with added lithium catechol dimethyl borate[J]. Journal of the Electrochemical Society, 2017, 164 (2):A128-A136. [53] LI Y, WAN S, VEITH G M, et al. A novel electrolyte salt additive for lithium-ion batteries with voltages greater than 4.7 V[J]. Advanced Energy Materials, 2017, 7 (4):1601397. [54] YOUNESI R, VEITH G M, JOHANSSON P, et al. Lithium salts for advanced lithium batteries:Li-metal, Li-O2, and Li-S[J]. Energy & Environmental Science, 2015, 8 (7):1905-1922. [55] 胡锋波, 张庆华, 詹晓力, 等. 双 (氟代磺酰)亚胺及其盐的制备, 性能与应用进展[J]. 化工进展, 2011, 30 (10):2097-2105. HU F B, ZHANG Q H, ZHAN X L, et al. Sythesis, performance and application process of bis (fluoro-based sulfonyl) imides and their salts[J]. Chemical Industry and Engineering Progress, 2011, 30 (10):2097-2105. [56] HAN H B, ZHOU S S, ZHANG D J, et al. Lithium bis (fluorosulfonyl) imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries:Physicochemical and electrochemical properties[J]. Journal of Power Sources, 2011, 196 (7):3623-3632. [57] KITA F, KAWAKAMI A, NIE J, et al. On the characteristics of electrolytes with new lithium imide salts[J]. Journal of Power Sources, 1997, 68 (2):307-310. [58] GRANZOW A. Flame retardation by phosphorus compounds[J]. Accounts of Chemical Research, 1978, 11 (5):177-183. [59] WANG X, YASUKAWA E, KASUYA S. Nonflammable trimethyl phosphate solvent-containing electrolytes for lithium-ion batteries:I. Fundamental properties[J]. Journal of the Electrochemical Society, 2001, 148 (10):A1058-A1065. [60] XIANG H, XU H, WANG Z, et al. Dimethyl methylphosphonate (DMMP) as an efficient flame retardant additive for the lithium-ion battery electrolytes[J]. Journal of Power Sources, 2007, 173 (1):562-564. [61] WANG X, YASUKAWA E, KASUYA S. Nonflammable trimethyl phosphate solvent-containing electrolytes for lithium-ion batteries:Ⅱ. The use of an amorphous carbon anode[J]. Journal of the Electrochemical Society, 2001, 148 (10):A1066-A1071. [62] XU K, DING M S, ZHANG S, et al. An attempt to formulate nonflammable lithium ion electrolytes with alkyl phosphates and phosphazenes[J]. Journal of the Electrochemical Society, 2002, 149 (5):A622-A666. [63] HYUNG Y E, VISSERS D R, AMINE K. Flame-retardant additives for lithium-ion batteries[J]. Journal of Power Sources, 2003, 119:383-387. [64] XU H, XIE S, WANG Q, et al. Electrolyte additive trimethyl phosphite for improving electrochemical performance and thermal stability of LiCoO2 cathode[J]. Electrochimica Acta, 2006, 52 (2):636-642. [65] ZHOU D, LI W, TAN C, et al. Cresyl diphenyl phosphate as flame retardant additive for lithium-ion batteries[J]. Journal of Power Sources, 2008, 184 (2):589-592. [66] FENG J, CAO Y, AI X, et al. Tri-(4-methoxythphenyl) phosphate:A new electrolyte additive with both fire-retardancy and overcharge protection for Li-ion batteries[J]. Electrochimica Acta, 2008, 53 (28):8265-8268. [67] WANG Q, SUN J, YAO X, et al. 4-isopropyl phenyl diphenyl phosphate as flame-retardant additive for lithium-ion battery electrolyte[J]. Electrochemical and Solid-State Letters, 2005, 8 (9):A467-A470. [68] NAM T H, SHIM E G, KIM J G, et al. Diphenyloctyl phosphate and tris (2, 2, 2-trifluoroethyl) phosphite as flame-retardant additives for Li-ion cell electrolytes at elevated temperature[J]. Journal of Power Sources, 2008, 180 (1):561-567. [69] TU W, XIA P, ZHENG X, et al. Insight into the interaction between layered lithium-rich oxide and additive-containing electrolyte[J]. Journal of Power Sources, 2017, 341:348-356. [70] SONG Y M, HAN J G, PARK S, et al. A multifunctional phosphite-containing electrolyte for 5 V-class LiNi0.5Mn1.5O4 cathodes with superior electrochemical performance[J]. Journal of Materials Chemistry A, 2014, 2 (25):9506-9513. [71] MCMILLAN R, SLEGR H, SHU Z, et al. Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes[J]. Journal of Power Sources, 1999, 81:20-26. [72] XIA L, XIA Y, WANG C, et al. 5 V-class electrolytes based on fluorinated solvents for Li-ion batteries with excellent cyclability[J]. ChemElectroChem, 2015, 2 (11):1707-1712. [73] LEE Y M, NAM K M, HWANG E H, et al. Interfacial origin of performance improvement and fade for 4.6 V LiNi0.5Co0.2Mn0.3O2 battery cathodes[J]. The Journal of Physical Chemistry C, 2014, 118 (20):10631-10639. [74] ZHU Y, CASSELMAN M D, LI Y, et al. Perfluoroalkyl-substituted ethylene carbonates:novel electrolyte additives for high-voltage lithium-ion batteries[J]. Journal of Power Sources, 2014, 246:184-191. [75] TSUJIKAWA T, YABUTA K, MATSUSHITA T, et al. Characteristics of lithium-ion battery with non-flammable electrolyte[J]. Journal of Power Sources, 2009, 189 (1):429-434. [76] KIM Y S, LEE H, SONG H K. Surface complex formation between aliphatic nitrile molecules and transition metal atoms for thermally stable lithium-ion batteries[J]. ACS Applied Materials &Interfaces, 2014, 6 (11):8913-8920. [77] ABU-LEBDEH Y, DAVIDSON I. High-voltage electrolytes based on adiponitrile for Li-ion batteries[J]. Journal of the Electrochemical Society, 2009, 156 (1):A60-A65. [78] ISKEN P, DIPPEL C, SCHMITZ R, et al. High flash point electrolyte for use in lithium-ion batteries[J]. Electrochimica Acta, 2011, 56 (22):7530-7535. [79] DI CENSO D, EXNAR I, GRAETZEL M. Non-corrosive electrolyte compositions containing perfluoroalkylsulfonyl imides for high power Li-ion batteries[J]. Electrochemistry Communications, 2005, 7 (10):1000-1006. [80] ZHANG S, XU K, JOW T. Tris (2, 2, 2-trifluoroethyl) phosphite as a co-solvent for nonflammable electrolytes in Li-ion batteries[J]. Journal of Power Sources, 2003, 113 (1):166-172. [81] TAN S, ZHANG Z, LI Y, et al. Tris (hexafluoro-iso-propyl) phosphate as an SEI-forming additive on improving the electrochemical performance of the Li[Li0.2Mn0.56Ni0.16Co0.08]O2 cathode material[J]. Journal of the Electrochemical Society, 2013, 160 (2):A285-A292. [82] CAO X, LI Y, LI X, et al. Novel phosphamide additive to improve thermal stability of solid electrolyte interphase on graphite anode in lithium-ion batteries[J]. ACS Applied Materials &Interfaces, 2013, 5 (22):11494-11497. [83] ZHANG Q, NOGUCHI H, WANG H, et al. Improved thermal stability of LiCoO2 by cyclotriphosphazene additives in lithium-ion batteries[J]. Chemistry Letters, 2005, 34 (7):1012-1013. [84] 陈仕玉, 王兆翔, 赵海雷, 等. 锂离子电池安全性添加剂[J]. 化学进展, 2009, 21 (4):629-636. CHEN S Y, WANG Z X, ZHAO H L, et al. Safety-enhangcing addtives for lithium ion batteries[J]. Progress in Chemistry, 2009, 21 (4):629-636. [85] WATANABE Y, MORIMOTO H, TOBISHIMA S I. Electrochemical properties of aryladamantanes as new overcharge protection compounds for lithium cells[J]. Journal of Power Sources, 2006, 154 (1):246-254. [86] BALAKRISHNAN P, RAMESH R, KUMAR T P. Safety mechanisms in lithium-ion batteries[J]. Journal of Power Sources, 2006, 155 (2):401-414. [87] 唐致远, 陈玉红, 汪亮. 锂离子电池过充保护添加剂研究进展[J]. 化工进展, 2005, 24 (12):1368-1372. TANG Z Y, CHEN Y H, WANG L. Research on overcharge protection additives for lithium ion battery[J]. Chemical Industry and Engineering Progress, 2005, 24 (12):1368-1372. [88] 熊琳强, 张英杰, 董鹏, 等. 锂离子电池电解液防过充添加剂研究进展[J]. 化工进展, 2011, 30 (6):1198-1204. XIONG L Q, ZHANG Y J, DONG P, et al. Development of overcharge protection additives for lithium ion secondary battery[J].Chemical Industry and Engineering Progress, 2011, 30 (6):1198-1204. [89] GOLOVIN M N, WILKINSON D P, DUDLEY J T, et al. Application of metallocenes in rechargeable lithium batteries for overcharge protection[J]. Journal of the Electrochemical Society, 1992, 139 (1):5-9. [90] FENG J K, AI X P, CAO Y L, et al. A highly soluble dimethoxybenzene derivative as a redox shuttle for overcharge protection of secondary lithium batteries[J]. Electrochemistry Communications, 2007, 9 (1):25-30. [91] 任春燕, 卢海, 贾明, 等. 过充保护添加剂1,2-二甲氧基-4-硝基苯和1,4-二甲氧基-2-硝基苯在锂离子电池中的应用[J]. 物理化学学报, 2012, 28 (9):2091-2096. REN C Y, LU H, JIA M, et al. Application of 1,2-dimethoxy-4-nitro-benzene and 1,4-dimethoxy-2-nitro-benzene as overcharge protection additives in lithium-ion batteries[J]. Acta Phys.-Chim. Sin., 2012, 28 (9):2091-2096. [92] SHIMA K, SHIZUKA K, UE M, et al. Reaction mechanisms of aromatic compounds as an overcharge protection agent for 4 V class lithium-ion cells[J]. Journal of Power Sources, 2006, 161 (2):1264-1274. [93] XIAO L F, CAO Y L, AI X P, et al. Optimization of EC-based multi-solvent electrolytes for low temperature applications of lithium-ion batteries[J]. Electrochimica Acta, 2004, 49 (27):4857-4863. [94] XU M Q, XING L D, LI W S, et al. Application of cyclohexyl benzene as electrolyte additive for overcharge protection of lithium ion battery[J]. Journal of Power Sources, 2008, 184 (2):427-431. [95] XIAO L, AI X, CAO Y, et al. Electrochemical behavior of biphenyl as polymerizable additive for overcharge protection of lithium ion batteries[J]. Electrochimica Acta, 2004, 49 (24):4189-4196. [96] EPELBOIN I, FROMENT M, GARREAU M, et al. Behavior of secondary lithium and aluminum-lithium electrodes in propylene carbonate[J]. Journal of the Electrochemical Society, 1980, 127 (10):2100-2104. [97] CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries:A review[J]. Chemical Reviews, 2017, 117 (15):10403-10473. [98] CHANG C H, CHUNG S H, MANTHIRAM A. Dendrite-free lithium anode via a homogenous Li-ion distribution enabled by a kimwipe paper[J]. Advanced Sustainable Systems, 2017, 1 (1/2):1600034. [99] QIAN J, HENDERSON W A, XU W, et al. High rate and stable cycling of lithium metal anode[J]. Nature Communications, 2015, 6:doi:http://doi.org/10.1038/ncomms7362. [100] XU W, WANG J, DING F, et al. Lithium metal anodes for rechargeable batteries[J]. Energy & Environmental Science, 2014, 7 (2):513-537. [101] AURBACH D, POLLAK E, ELAZARI R, et al. On the surface chemical aspects of very high energy density, rechargeable Li-sulfur batteries[J]. Journal of the Electrochemical Society, 2009, 156 (8):A694-A702. [102] DING F, XU W, GRAFF G L, et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism[J]. Journal of the American Chemical Society, 2013, 135 (11):4450-4456. [103] ZHANG Y, QIAN J, XU W, et al. Dendrite-free lithium deposition with self-aligned nanorod structure[J]. Nano Letters, 2014, 14 (12):6889-6896. [104] SHI P, ZHANG L, XIANG H, et al. Lithium difluorophosphate as a dendrite-suppressing additive for lithium metal batteries[J]. ACS Applied Materials &Interfaces, 2018:doi:10.1021/acsami.8b05185. [105] MOGI R, INABA M, JEONG S K, et al. Effects of some organic additives on lithium deposition in propylene carbonate[J]. Journal of the Electrochemical Society, 2002, 149 (12):A1578-A1583. [106] IHARA M, HANG B T, SATO K, et al. Properties of carbon anodes and thermal stability in LiPF6/methyl difluoroacetate electrolyte[J]. Journal of the Electrochemical Society, 2003, 150 (11):A1476-A1483. [107] SATO K, ZHAO L, OKADA S, et al. LiPF6/methyl difluoroacetate electrolyte with vinylene carbonate additive for Li-ion batteries[J]. Journal of Power Sources, 2011, 196 (13):5617-5622. [108] MATSUDA Y, NAKAJIMA T, OHZAWA Y, et al. Safety improvement of lithium ion batteries by organo-fluorine compounds[J]. Journal of Fluorine Chemistry, 2011, 132 (12):1174-1181. [109] LI Z, ZHANG Y, XIANG H, et al. Trimethyl phosphite as an electrolyte additive for high-voltage lithium-ion batteries using lithium-rich layered oxide cathode[J]. Journal of Power Sources, 2013, 240:471-475. |
[1] | Shunmin YI, Linbo XIE, Li PENG. Remaining useful life prediction of lithium-ion batteries based on VF-DW-DFN [J]. Energy Storage Science and Technology, 2022, 11(7): 2305-2315. |
[2] | Qingwei ZHU, Xiaoli YU, Qichao WU, Yidan XU, Fenfang CHEN, Rui HUANG. Semi-empirical degradation model of lithium-ion battery with high energy density [J]. Energy Storage Science and Technology, 2022, 11(7): 2324-2331. |
[3] | Yuzuo WANG, Jin WANG, Yinli LU, Dianbo RUAN. Study on the effects of pore structure on lithium-storage performances for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(7): 2023-2029. |
[4] | Wei KONG, Jingtao JIN, Xipo LU, Yang SUN. Study on cooling performance of lithium ion batteries with symmetrical serpentine channel [J]. Energy Storage Science and Technology, 2022, 11(7): 2258-2265. |
[5] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[6] | YAN Qiaoyi, WU Feng, CHEN Renjie, LI Li. Recovery and resource recycling of graphite anode materials for spent lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1760-1771. |
[7] | WANG Yuzuo, DENG Miao, WANG Jin, YANG Bin, LU Yinli, JIN Ge, RUAN Dianbo. Study on the effects of carbonization temperature on lithium-storage kinetics for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(6): 1715-1724. |
[8] | YU Chunhui, HE Ziying, ZHANG Chenxi, LIN Xianqing, XIAO Zhexi, WEI Fei. The analyses and suppressing strategies of silicon anode with the electrolyte [J]. Energy Storage Science and Technology, 2022, 11(6): 1749-1759. |
[9] | WANG Can, MA Pan, ZHU Guoliang, WEI Shuimiao, YANG Zhilu, ZHANG Zhiyu. Effect of lithium acrylic-coated nature graphite on its electrochemical properties [J]. Energy Storage Science and Technology, 2022, 11(6): 1706-1714. |
[10] | LIU Hangxin, CHEN Xiantao, SUN Qiang, ZHAO Chenxi. Cycle performance characteristics of soft pack lithium-ion batteries under vacuum environment [J]. Energy Storage Science and Technology, 2022, 11(6): 1806-1815. |
[11] | Guangyu CHENG, Xinwei LIU, Yueni MEI, Honghui GU, Cheng YANG, Ke WANG. Capacity fading analysis of lithium-ion battery after high temperature storage [J]. Energy Storage Science and Technology, 2022, 11(5): 1339-1349. |
[12] | Yanwen DAI, Aiqing YU. Combined CNN-LSTM and GRU based health feature parameters for lithium-ion batteries SOH estimation [J]. Energy Storage Science and Technology, 2022, 11(5): 1641-1649. |
[13] | Chunjing LIN, Danhua LI, Haoran WEN, Tianyi MA, Hong CHANG, Peixiang CHANG, Haiqiang LI, Shiqiang LIU. Research on swelling force characteristics of power battery during charging [J]. Energy Storage Science and Technology, 2022, 11(5): 1627-1633. |
[14] | Qiaomin KE, Jian GUO, Yiwei WANG, Wenjiong CAO, Man CHEN, Fangming JIANG. The effect of liquid-cooled thermal management on thermal runaway of power battery [J]. Energy Storage Science and Technology, 2022, 11(5): 1634-1640. |
[15] | Zhenkai HU, Bo LEI, Yongqi LI, Youjie SHI, Qikai LEI, Zhipeng HE. Comparative study on safety test and evaluation methods of lithium-ion batteries for energy storage [J]. Energy Storage Science and Technology, 2022, 11(5): 1650-1656. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||