Energy Storage Science and Technology ›› 2019, Vol. 8 ›› Issue (1): 14-25.doi: 10.12028/j.issn.2095-4239.2018.0244
Previous Articles Next Articles
WU Yida, ZHAO Junnian, ZHAN Yuanjie, JIN Zhou, ZHANG Hua, QI Wenbin, TIAN Feng, YU Hailong, BEN Liubin, LIU Yanyan, HUANG Xuejie
Received:
2018-12-15
Online:
2019-01-01
Published:
2019-01-01
CLC Number:
WU Yida, ZHAO Junnian, ZHAN Yuanjie, JIN Zhou, ZHANG Hua, QI Wenbin, TIAN Feng, YU Hailong, BEN Liubin, LIU Yanyan, HUANG Xuejie. Reviews of selected 100 recent papers for lithium batteries (Oct. 1,2018 to Nov. 30,2018)[J]. Energy Storage Science and Technology, 2019, 8(1): 14-25.
[1] TSAI P C, WEN B, WOLFMAN M, et al. Single-particle measurements of electrochemical kinetics in NMC and NCA cathodes for Li-ion batteries[J]. Energy & Environmental Science, 2018, 11(4):860-871. [2] XU M, FEI L, ZHU S C, et al. Multifunctional NiTiO3 nanocoating fabrication based on the dual-Kirkendall effect enabling a stable cathode/electrolyte interface for nickel-rich layered oxides[J]. Journal of Materials Chemistry A, 2018, 6(6):2643-2652. [3] KIM U H, JUN D W, PARK K J, et al. Pushing the limit of layered transition metal oxide cathodes for high-energy density rechargeable Li ion batteries[J]. Energy & Environmental Science, 2018, 11(5):1271-1279. [4] LEE T J, KIM H S, HWANG H S, et al. Solid permeable interface (SPI) on a high-voltage positive electrode of lithium-ion batteries[J]. Journal of the Electrochemical Society, 2018, 165(3):A575-A583. [5] KIM D W, UCHIDA S, SHⅡBA H, et al. New insight for surface chemistries in ultra-thin self-assembled monolayers modified high-voltage spinel cathodes[J]. Scientific Reports, 2018, 8:doi:10.1038/s41598-018-30135-2. [6] PATIL, N, AQIL M, AQIL A, et al. Integration of redox-active catechol pendants into poly(ionic liquid) for the design of high-performance lithium-ion battery cathodes[J]. Chemistry of Materials, 2018, 30(17):5831-5835. [7] PREEFER M B, OSCHMANN B, HAWKER C J, et al. High sulfur content material with stable cycling in lithium-sulfur batteries[J]. Angewandte Chemie-International Edition, 2017, 56(47):15118-15122. [8] CHERKASHININ G, LEBEDEV M V, SHARATH S U, et al. Exploring redox activity in a LiCoPO4-LiCo2P3O10 tailored positive electrode for 5 V lithium ion batteries:Rigid band behavior of the electronic structure and stability of the delithiated phase[J]. Journal of Materials Chemistry A, 2018, 6(12):4966-4970. [9] ZHAO C, WADA T, ANDRADE DE V, et al. Imaging of 3D morphological evolution of nanoporous silicon anode in lithium ion battery by X-ray nano-tomography[J]. Nano Energy, 2018, 52:381-390. [10] KUMAR S K, GHOSH S, MALLADI S K, et al. Nanostructured silicon-carbon 3D electrode architectures for high-performance lithium-ion batteries[J]. ACS Omega, 2018, 3(8):9598-9606. [11] WANG J, LIAO L, LI Y, et al. Shell-protective secondary silicon nanostructures as pressure-resistant high-volumetric-capacity anodes for lithium-ion batteries[J]. Nano Letters, 2018:doi:10.1021/acs. nanolett.8603065. [12] RYU J, CHEN T, BOK T, et al. Mechanical mismatch-driven rippling in carbon-coated silicon sheets for stress-resilient battery anodes[J]. Nature Communications, 2018, 9:doi:10.1038/s41467-018-05398-9. [13] SADEGHIPARI M, MOHAJERZADEH M A, HAJMIRZAHEYDARALI M, et al. A novel approach to realize Si-based porous wire-in-tube nanostructures for high-performance lithium-ion batteries[J]. Small, 2018, 14(22):doi:10.1002/smll.201800615. [14] CHANG W J, KIM S H, HWANG J, et al. Controlling electric potential to inhibit solid-electrolyte interphase formation on nanowire anodes for ultrafast lithium-ion batteries[J]. Nature Communications, 2018, 9:doi:10.1038/s41467-018-05986-9. [15] LI L, ZUO Z, SHANG H, et al. In-situ constructing 3D graphdiyne as all-carbon binder for high-performance silicon anode[J]. Nano Energy, 2018, 53:135-143. [16] YAMAMOTO M, TERAUCHI Y, SAKUDA A, et al. Slurry mixing for fabricating silicon-composite electrodes in all-solid-state batteries with high areal capacity and cycling stability[J]. Journal of Power Sources, 2018, 402:506-512. [17] KANG J, KIM H V, CHAE S A, et al. A new strategy for maximizing the storage capacity of lithium in carbon materials[J]. Small, 2018, 14(20):doi:10.1002/smll.201704394. [18] WANG T, SALVATIERRA R V, JALILOV A S, et al. Ultrafast charging high capacity asphalt-lithium metal batteries[J]. ACS Nano, 2017, 11(11):10761-10767. [19] ZOLLER F, PETERS K, ZEHETMAIER P M, et al. Making ultrafast high-capacity anodes for lithium-ion batteries via antimony doping of nanosized Tin oxide/graphene composites[J]. Advanced Functional Materials, 2018, 28(23):doi:10.1002/adfm.201706529. [20] LIU S, XIA X, DENG S, et al. In situ solid electrolyte interphase from spray quenching on molten Li:A new way to construct high-performance lithium-metal anodes[J]. Advanced Materials (Deerfield Beach, Fla.), 2018:e1806470-e1806470. [21] MARASCHKY A, AKOLKAR R. Mechanism explaining the onset time of dendritic lithium electrodeposition via considerations of the Li+ transport within the solid electrolyte interphase[J]. Journal of the Electrochemical Society, 2018, 165(14):D696-D703. [22] SHI F, PEI A, BOYLE D T, et al. Lithium metal stripping beneath the solid electrolyte interphase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(34):8529-8534. [23] JOSHI P, IWAI K, PATNAIK S G, et al. Reduction of charge-transfer resistance via artificial SEI formation using electropolymerization of borylated thiophene monomer on graphite anodes[J]. Journal of the Electrochemical Society, 2018, 165(3):A493-A500. [24] GOLOZAR M, HOVINGTON P, PAOLELLA A, et al. In-situ scanning electron microscopy detection of carbide nature of dendrites in Li-polymer batteries[J]. Nano Letters, 2018:doi:10.1021/acs.nanolett.8603148. [25] GUO X, DING Y, XUE L, et al. A self-healing room-temperature liquid-metal anode for Alkali-ion batteries[J]. Advanced Functional Materials, 2018, 28(46):doi:10.1002/adfm.201804649. [26] KO Y, KWON M, SONG Y, et al. Thin-film electrode design for high volumetric electrochemical performance using metal sputtering-combined ligand exchange layer-by-layer assembly[J]. Advanced Functional Materials, 2018, 28(46):doi:10.1002/adfm.201804926. [27] YE H, ZHENG Z J, YAO H R, et al. Guiding uniform Li plating/stripping via lithium aluminum alloying medium for long-life Li metal batteries[J]. Angewandte Chemie (International ed. in English), 2018:doi:10.1002/anie.201811955. [28] ZACHMAN M J, TU Z, CHOUDHURY S, et al. Cryo-STEM mapping of solid-liquid interfaces and dendrites in lithium-metal batteries[J]. Nature, 2018, 560(7718):doi:1038/s41586-018-0397-3. [29] HUANG G, HAN J, ZHANG F, et al. Lithiophilic 3D nanoporous nitrogen-doped graphene for dendrite-free and ultrahigh-rate lithium-metal anodes[J]. Advanced Materials (Deerfield Beach, Fla.), 2018:e1805334-e1805334. [30] PUT B, VEREECKEN P M, STESMANS A. On the chemistry and electrochemistry of LiPON breakdown[J]. Journal of Materials Chemistry A, 2018, 6(11):4848-4859. [31] NGUYEN H H, HIRAHARA E, MORIKAWA K, et al. One-pot liquid phase synthesis of (100-x)Li3PS4x LiI solid electrolytes[J]. Journal of Power Sources, 2017, 365:7-11. [32] HOOD Z D, WANG H, PANDIAN A S, et al. Fabrication of sub-micrometer-thick solid electrolyte membranes of beta-Li3PS4 via tiled assembly of nanoscale, plate-like building blocks[J]. Advanced Energy Materials, 2018, 8(21):doi:10.1002/aenm.201800014. [33] FAGLIONI F, MERINOV B V, GODDARD W A, Ⅲ, et al. Factors affecting cyclic durability of all-solid-state lithium batteries using poly(ethylene oxide)-based polymer electrolytes and recommendations to achieve improved performance[J]. Physical Chemistry Chemical Physics, 2018, 20(41):26098-26104. [34] KRAFT M A, OHNO S, ZINKEVICH T, et al. Inducing high ionic conductivity in the lithium superionic argyrodites Li6+xP1-xGexS5I for all-solid-state batteries[J]. Journal of the American Chemical Society, 2018:doi:10.1021/jacs.8610282. [35] BUSCHMANN H, DOELLE J, S BERENDTS, et al. Structure and dynamics of the fast lithium ion conductor "Li7La3Zr2O12"[J]. Physical Chemistry Chemical Physics, 2011, 13(43):19378-19392. [36] DAWSON J A, ATTARI T S, CHEN H, et al. Elucidating lithium-ion and proton dynamics in anti-perovskite solid electrolytes[J]. Energy & Environmental Science, 2018, 11(10):2993-3002. [37] KAZYAK E, CHEN K H, DAVIS A L, et al. Atomic layer deposition and first principles modeling of glassy Li3BO3-Li2CO3 electrolytes for solid-state Li metal batteries[J]. Journal of Materials Chemistry A, 2018, 6(40):19425-19437. [38] YU L, CHEN S, LEE H, et al. A localized high-concentration electrolyte with optimized solvents and lithium difluoro(oxalate) borate additive for stable lithium metal batteries[J]. ACS Energy Letters, 2018, 3(9):2059-2067. [39] JURNG S, BROWN Z L, KIM J, et al. Effect of electrolyte on the nanostructure of the solid electrolyte interphase (SEI) and performance of lithium metal anodes[J]. Energy & Environmental Science, 2018, 11(9):2600-2608. [40] HUANG F, MA G, WEN Z, et al. Enhancing metallic lithium battery performance by tuning the electrolyte solution structure[J]. Journal of Materials Chemistry A, 2018, 6(4):1612-1620. [41] ZHAO J, YU H, BEN L, et al. Inhibition of lithium dendrite growth by forming rich polyethylene oxide-like species in a solid-electrolyte interphase in a polysulfide/carbonate electrolyte[J]. Journal of Materials Chemistry A, 2018, 6(35):16818-16823. [42] WANG Y, ZHANG X, XIONG P, et al. Insight into the intercalation mechanism of WSe2 onions toward metal ion capacitors:Sodium rivals lithium[J]. Journal of Materials Chemistry A, 2018, 6(43):21605-21617. [43] XIN X, ITO K, DUTTA A, et al. Dendrite-free epitaxial growth of lithium metal during charging in Li-O-2 batteries[J]. Angewandte Chemie-International Edition, 2018, 57(40):13206-13210. [44] SAHORE R, TORNHEIM A, PEEBLES C, et al. Methodology for understanding interactions between electrolyte additives and cathodes:A case of the tris(2,2,2-trifluoroethyl)phosphite additive[J]. Journal of Materials Chemistry A, 2018, 6(1):198-211. [45] NELSON K J, HARLOW J E, DAHN J R. A comparison of NMC/graphite pouch cells and commercially available LiCoO2/graphite pouch cells tested to high potential[J]. Journal of the Electrochemical Society, 2018, 165(3):A456-A462. [46] EHTESHAMI N, EGUIA-BARRIO A, MEATZA DE I, et al. Adiponitrile-based electrolytes for high voltage, graphite-based Li-ion battery[J]. Journal of Power Sources, 2018, 397:52-58. [47] ZHUANG Y, DU F, ZHU L, et al. Trimethylsilyl(trimethylsiloxy) acetate as a novel electrolyte additive for improvement of electrochemical performance of lithium-rich Li1.2Ni0.2Mn0.6O2 cathode in lithium-ion batteries[J]. Electrochimica Acta, 2018, 290:220-227. [48] TORNHEIM A, PEEBLES C, GILBERT J A, et al. Evaluating electrolyte additives for lithium-ion cells:A new Figure of Merit approach[J]. Journal of Power Sources, 2017, 365:201-209. [49] TORNHEIM A, SAHORE R, HE M, et al. Preformed anodes for high-voltage lithium-ion battery performance:Fluorinated electrolytes, crosstalk, and the origins of impedance rise[J]. Journal of the Electrochemical Society, 2018, 165(14):A3360-A3368. [50] CHEREDDY S, CHINNAM P R, CHATARE V, et al. An alternative route to single ion conductivity using multi-ionic salts[J]. Materials Horizons, 2018, 5(3):461-473. [51] DONG N, YANG G, LUO H, et al. A LiPO2F2/LiFSI dual-salt electrolyte enabled stable cycling of lithium metal batteries[J]. Journal of Power Sources, 2018, 400:449-456. [52] LIU Y, LIN D, LI Y, et al. Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode[J]. Nature Communications, 2018, 9:doi:10.1038/s41467-018-06077-5. [53] ZHANG G, PENG H J, ZHAO C Z, et al. The radical pathway based on a lithium-metal-compatible high-dielectric electrolyte for lithium-sulfur batteries[J]. Angewandte Chemie (International ed. in English), 2018:doi:10.1002/anie.201810132. [54] LI C, CHEN Y, CHEN Y, et al. Stability analysis for 5V high energy density pouch batteries of Si anode and SL/EMC electrolytes[J]. Journal of Alloys and Compounds, 2019, 773:105-111. [55] LIM J, PARK K, LEE H, et al. Nanometric water channels in water-in-salt lithium ion battery electrolyte[J]. Journal of the American Chemical Society, 2018, 140(46):15661-15667. [56] RODRIGUES M T, KALAGA K, BABU G, et al. Coulombic inefficiency of graphite anode at high temperature[J]. Electrochimica Acta, 2018, 285:1-8. [57] GAO Y, WANG D, LI Y C, et al. Salt-based organic-inorganic nanocomposites:Towards a stable lithium metal/Li10GeP2S12 solid electrolyte interface[J]. Angewandte Chemie-International Edition, 2018, 57(41):13608-13612. [58] SHIN H S, RYU W G, PARK M S, et al. Multilayered, bipolar, all-solid-state battery enabled by a perovskite-based biphasic solid electrolyte[J]. ChemSusChem, 2018, 11(18):3184-3190. [59] CHEN M, CORTIE D, HU Z, et al. A novel graphene oxide wrapped Na2Fe2(SO4)(3)/C cathode composite for long life and high energy density sodium-ion batteries[J]. Advanced Energy Materials, 2018, 8(27):doi:10.1002/aenm. 201800944. [60] XU H, LI Y, ZHOU A, et al. Li3N-modified garnet electrolyte for all-solid-state lithium metal batteries operated at 40℃[J]. Nano Letters, 2018:doi:10.1021/acs.nanolett.8b03902. [61] WANG C, ZHAO Y, SUN Q, et al. Stabilizing interface between Li10SnP2S12 and Li metal by molecular layer deposition[J]. Nano Energy, 2018, 53:168-174. [62] LU Y, HUANG X, RUAN Y, et al. An in situ element permeation constructed high endurance Li-LLZO interface at high current densities[J]. Journal of Materials Chemistry A, 2018, 6(39):18853-18858. [63] XU R, HAN F, JI X, et al. Interface engineering of sulfide electrolytes for all-solid-state lithium batteries[J]. Nano Energy, 2018, 53:958-966. [64] SUYAMA M, KATO A, SAKUDA A, et al. Lithium dissolution/deposition behavior with Li3PS4-LiI electrolyte for all-solid-state batteries operating at high temperatures[J]. Electrochimica Acta, 2018, 286:158-162. [65] FU K, GONG Y, FU Z, et al. Transient behavior of the metal interface in lithium metal-garnet batteries[J]. Angewandte Chemie-International Edition, 2017, 56(47):14942-14947. [66] LI Q, PAN H, LI W, et al. Homogeneous interface conductivity for lithium dendrite-free anode[J]. ACS Energy Letters, 2018, 3(9):2259-2266. [67] DONG Q, YANG J, WU M, et al. Template-free synthesis of cobalt silicate nanoparticles decorated nanosheets for high performance lithium ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11):15591-15597. [68] ULISSI U, ITO S, HOSSEINI S M, et al. High capacity all-solid-state lithium batteries enabled by pyrite-sulfur composites[J]. Advanced Energy Materials, 2018, 8(26):doi:10.1002/aenm.201801462. [69] ZHANG T, MARINESCU M, WALUS S, et al. What limits the rate capability of Li-S batteries during discharge:Charge transfer or mass transfer?[J]. Journal of the Electrochemical Society, 2018, 165(1):A6001-A6004. [70] LI M, ZHANG Y, BAI Z, et al. A lithium-sulfur battery using a 2D current collector architecture with a large-sized sulfur host operated under high areal loading and low E/S ratio[J]. Advanced Materials (Deerfield Beach, Fla.), 2018, 30(46):e1804271-e1804271. [71] SALVATIERRA R V, LOPEZ-SILVA G A, JALILOV A S, et al. Suppressing Li metal dendrites through a solid Li-ion backup layer[J]. Advanced Materials (Deerfield Beach, Fla.), 2018:e1803869-e1803869. [72] LIANG J, LI X, ZHAO Y, et al. In situ Li3PS4 solid-state electrolyte protection layers for superior long-life and high-rate lithium-metal anodes[J]. Advanced Materials (Deerfield Beach, Fla.), 2018:e1804684-e1804684. [73] GLAZIER S L, LI J, LOULI A J, et al. An analysis of artificial and natural graphite in lithium ion pouch cells using ultra-high precision coulometry, isothermal microcalorimetry, gas evolution, long term cycling and pressure measurements[J]. Journal of the Electrochemical Society, 2017, 164(14):A3545-A3555. [74] LIU Z, HU W, GAO F, et al. An ab initio study for probing iodization reactions on metallic anode surfaces of Li-I-2 batteries[J]. Journal of Materials Chemistry A, 2018, 6(17):7807-7814. [75] CHEN C, OUDENHOVEN J F M, DANILOV D L, et al. Origin of degradation in Si-based all-solid-state Li-ion microbatteries[J]. Advanced Energy Materials, 2018, 8(30):doi:10.1002/aenm.201804130. [76] LI X, BANIS M, LUSHINGTON A, et al. A high-energy sulfur cathode in carbonate electrolyte by eliminating polysulfides via solid-phase lithium-sulfur transformation[J]. Nature Communications, 2018, 9:doi:10.1038/s4146-018-06877-9. [77] LIU T, LIN L, BI X, et al. In situ quantification of interphasial chemistry in Li-ion battery[J]. Nature nanotechnology, 2018:doi:10.1038/s41565-018-0284-y. [78] WOOD S M, FANG C, DUFEK E J, et al. Predicting calendar aging in lithium metal secondary batteries:The impacts of solid electrolyte interphase composition and stability[J]. Advanced Energy Materials, 2018, 8(26):doi:10.1002/aenm.201861427. [79] FIEDLER C, LUERSSEN B, ROHNKE M, et al. XPS and SIMS analysis of solid electrolyte interphases on lithium formed by ether-based electrolytes[J]. Journal of the Electrochemical Society, 2017, 164(14):A3742-A3749. [80] WANG X, ZHANG M, ALVARADO J, et al. New insights on the structure of electrochemically deposited lithium metal and its solid electrolyte interphases via cryogenic TEM[J]. Nano Letters, 2017, 17(12):7606-7612. [81] STARKE B, SEIDLMAYER S, SCHULZ M, et al. Gas evolution and capacity fading in LiFexMn1-xPO4/graphite cells studied by neutron imaging and neutron induced prompt gamma activation analysis[J]. Journal of the Electrochemical Society, 2017, 164(14):A3943-A3948. [82] BOULET-ROBLIN L, SHEPTYAKOV D, BOREL P, et al. Crystal structure evolution via operando neutron diffraction during long-term cycling of a customized 5 V full Li-ion cylindrical cell LiNi0.5Mn1.5O4 vs. graphite[J]. Journal of Materials Chemistry A, 2017, 5(48):25574-25582. [83] BUCCI G, TALAMINI B, BALAKRISHNA A R, et al. Mechanical instability of electrode-electrolyte interfaces in solid-state batteries[J]. Physical Review Materials, 2018, 2(10):doi:10.1103/PhyRevMaterials. 2.105407. [84] KRANZ T, KRANZ S, MISS V, et al. Interrelation between redox molecule transport and Li+ ion transport across a model solid electrolyte interphase grown on a glassy carbon electrode[J]. Journal of the Electrochemical Society, 2017, 164(14):A3777-A3784. [85] DONG K, MARKOTTER H, SUN F, et al. In situ and operando tracking of microstructure and volume evolution of silicon electrodes by using synchrotron X-ray imaging[J]. ChemSusChem, 2018:doi:10.1002/cssc.201801969. [86] BARTSCH T, STRAUSS F, HATSUKADE T, et al. Gas evolution in all-solid-state battery cells[J]. ACS Energy Letters, 2018, 3(10):2539-2543. [87] GLAZIER S L, ODOM S A, KAUR A P, et al. Determining parasitic reaction enthalpies in lithium-ion cells using isothermal microcalorimetry[J]. Journal of the Electrochemical Society, 2018, 165(14):A3449-A3458. [88] HAO F, VERMA A, MUKHERJEE P P. Mechanistic insight into dendrite-SEI interactions for lithium metal electrodes[J]. Journal of Materials Chemistry A, 2018, 6(40):19664-19671. [89] INTAN N N, KLYUKIN K, ALEXANDROV V. Theoretical insights into oxidation states of transition metals at (001) and (111) LiNi0.5Mn1.5O4 spinel surfaces[J]. Journal of the Electrochemical Society, 2018, 165(5):A1099-A1103. [90] SHIN Y, KAN W H, AYKOL M, et al. Alleviating oxygen evolution from Li-excess oxide materials through theory-guided surface protection[J]. Nature Communications, 2018, 9:doi:10.1038/s41467-018-07080-6. [91] OHWAKI T, OZAKI T, OKUNO Y, et al. Li deposition and desolvation with electron transfer at a silicon/propylene-carbonate interface:Transition-state and free-energy profiles by large-scale first-principles molecular dynamics[J]. Physical Chemistry Chemical Physics, 2018, 20(17):11586-11591. [92] LI Y, N A ROMERO, K C LAU. Structure-property of lithium-sulfur nanoparticles via molecular dynamics simulation[J]. ACS Applied Materials & Interfaces, 2018, 10(43):37575-37585. [93] ELLIS L D, ALLEN J P, THOMPSON L M, et al. Quantifying, understanding and evaluating the effects of gas consumption in lithium-ion cells[J]. Journal of the Electrochemical Society, 2017, 164(14):A3518-A3528. [94] MAO Z, FARKHONDEH M, PRITZKER M, et al. Calendar aging and gas generation in commercial graphite/NMC-LMO lithium-ion pouch cell[J]. Journal of the Electrochemical Society, 2017, 164(14):A3469-A3483. [95] BIAN X, PANG Q, WEI Y, et al. Dual roles of Li3N as an electrode additive for Li-excess layered cathode materials:A Li-ion sacrificial salt and electrode-stabilizing agent[J]. Chemistry-A European Journal, 2018, 24(52):13815-13820. [96] WEI L, HOU Z. High performance polymer binders inspired by chemical finishing of textiles for silicon anodes in lithium ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(42):22156-22162. [97] BYEON P, BAE H B, CHUNG H S, et al. Atomic-scale observation of LiFePO4 and LiCoO2 dissolution behavior in aqueous solutions[J]. Advanced Functional Materials, 2018, 28(45):doi:10.1002/adfm. 201804564. [98] PARK S, NENOV N S, RAMACHANDRAN A, et al. Development of highly energy densified ink for 3D printable batteries[J]. Energy Technology, 2018, 6(10):2058-2064. [99] KATO A, KOWADA H, DEGUCHI M, et al. XPS and SEM analysis between Li/Li3PS4 interface with Au thin film for all-solid-state lithium batteries[J]. Solid State Ionics, 2018, 322:1-4. [100] ZHAO C Z, CHEN P Y, ZHANG R, et al. An ion redistributor for dendrite-free lithium metal anodes[J]. Science Advances, 2018, 4(11):eaat3446-eaat3446. |
[1] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[2] | Yingwei PEI, Hong ZHANG, Xinghui WANG. Recent advances in the electrolytes of rechargeable zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2075-2082. |
[3] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[4] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[5] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[6] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
[7] | LI Yitao, SHEN Kaier, PANG Quanquan. Advance in organics enhanced sulfide-based solid-state batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1902-1918. |
[8] | ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. |
[9] | ZHANG Yan, WANG Hai, LIU Zhaomeng, ZHANG Deliu, WANG Jiadong, LI Jianzhong, GAO Xuanwen, LUO Wenbin. Research progress of nickel-rich ternary cathode material ncm for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1693-1705. |
[10] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
[11] | Honghui WANG, Zeqin WU, Deren CHU. Thermal behavior of lithium titanate based Li ion batteries under slight over-discharging condition [J]. Energy Storage Science and Technology, 2022, 11(5): 1305-1313. |
[12] | Zhicheng CHEN, Zongxu LI, Ling CAI, Yisi LIU. Development status and future prospects of flexible metal-air batteries [J]. Energy Storage Science and Technology, 2022, 11(5): 1401-1410. |
[13] | Maolin FANG, Ying ZHANG, Lin QIAO, Shumin LIU, Zhongqi CAO, Huamin ZHANG, Xiangkun MA. Research progress of iron-chromium flow batteries technology [J]. Energy Storage Science and Technology, 2022, 11(5): 1358-1367. |
[14] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[15] | Ying TAO, Lingfei ZHAO, Yunxiao WANG, Yuliang CAO, Shulei CHOU. Stabilization of sodium metal anodes by dual-salt high concentration electrolyte [J]. Energy Storage Science and Technology, 2022, 11(4): 1103-1109. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||