[1] 李勇,王丽芳,廖承林.电动车锂离子电池健康状态模型研宄进展[J]. 电源技术,2013, 37(5):863-866. LI Y, WANG L F, LIAO C L. Research progress on state of health model of lithium ion battery for electric vehicles[J]. Chinese Journal of Power Sources, 2013, 37(5):863-866.
[2] 刘建强,叶从进,窦贤云,等.锂离子电池健康状态估计研宄[J].轻工科技,2017(6):72-73. LIU J Q, YE C J, DOU X Y, et al. Research on state of health estimation of lithium ion batteries[J]. Light Industry Science and Technology, 2017(6):72-73.
[3] 黄业伟.电动汽车锂离子动力电池健康状态估计方法研究[D].合肥:合肥工业大学,2014. HUANG Y W. Research on state of health estimation method for Lithium-ion battery of electric vehicle[D]. Hefei:Hefei University of Technology, 2014.
[4] 张金龙,佟微,孙叶宁,等.锂电池健康状态估算方法综述[J].电源学报,2017, 15(2):128-134. ZHANG J L, TONG W, SUN Y N, et al. Summarize of Lithium Battery Status of Health Estimation Method[J]. Journal of Power Supply, 2017, 15(2):128-134.
[5] 王晓梅. 神经网络导论[M]. 北京:科学出版社,2017. WANG X M. Introduction to neural networks[M]. Beijing:Science Press, 2017.
[6] 肖仁鑫,李沛森,李晓宇,等.基于蚁群神经网络算法的电池健康状态估计[J].电源技术,2017,41(6):916-919. XIAO R X, LI P S, LI X Y,等.State of health estimation for lithium-ion battery based on ant colony neural network[J]. Chinese Journal of Power Sources, 2017, 41(6):916-919.
[7] 张昊.基于IC曲线特征参数的锂离子电池SOH估计及DSP实现[D]. 北京:北京交通大学,2018. ZHANG H. SOH estimation and DSP implementation of lithium ion battery based on characteristic parameters of IC curve[D]. Beijing:Beijing Jiao tong University, 2018.
[8] 汤露曦.电动汽车动力电池SOH在线实时估计算法研究[D].广东:广东工业大学,2015. TANG L X. The research of online soh estimation of power battery in electric vehicle[D]. Guangdong:Guangdong University of Technology, 2015.
[9] 韩丽, 戴广剑, 李宁. 基于GA-Elman神经网络的电池劣化程度预测研究[J]. 电源技术, 2013, 37(2):249-250. HAN L, DAI G J, LI N. Prediction of SOH of battery based on GAElman neural networks[J]. Chinese Journal of Power Sources, 2013, 37(2):249-250.
[10] 刘婉晴. 电池健康状态估算[J]. 华南理工大学学报(自然科学版), 2017, 39(1):91-95. LIU W Q. Battery SOH Estimation[J]. Journal of North China University of Science and Technology(Natural Science Edition), 2017, 39(1):91-95.
[11] LIN H T, LIANG T J, CHEN S M. Estimation of battery state of health using probabilistic neural network[J]. IEEE Transactions on Industrial Informatics, 2013, 9(2):679-685.
[12] 张任, 胥芳, 陈教料, 等. 基于PSO-RBF神经网络的锂离子电池健康状态预测[J]. 中国机械工程, 2016, 27(21):2975-2981. ZHANG R, XU F, CHEN J L, et al. Li-ion battery SOH prediction based on PSO-RBF neural network[J]. China Mechanical Engineering, 2016, 27(21):2975-2981.
[13] 刘海洋. 基于阻抗谱时域测量的锂离子电池健康状态估计研究[D]. 哈尔滨:哈尔滨工业大学, 2018. LIU H Y. Research on state of health estimation of lithium ion batteries based on time domain electrochemical impedance spectroscopy measurement[D]. Harbin:Harbin Institute of Technology, 2018.
[14] 李睿琪, 汪玉洁, 陈宗海. 一种基于支持向量机的锂电池健康状态评估方法[M]. 合肥:中国科技大学出版社, 2016:55-60. LI R Q, WANG Y J, CHEN Z H. A method for state-of-health estimation of lithium-ion battery based on support vector machine[M]. Hefei:University of Science and Technology of China Press, 2016:55-60.
[15] 苏晓波. 磷酸铁锂电池建模及健康状态估计研究[D]. 昆明:昆明理工大学, 2017. SU X B. Lithium iron phosphate battery modeling and SOH estimation research[D]. Kunming:Kunming University of Science and Technology, 2017.
[16] 郭琦沛. 锂离子动力电池健康特征提取与诊断研究[D]. 北京:北京交通大学, 2018. GUO Q P. Study on the health feature extraction and diagnosis of power lithium-ion batteries[D]. Beijing:Beijing Jiaotong University, 2018.
[17] 孙猛猛. 基于数据驱动方法的锂离子电池健康状态估计[D]. 昆明:昆明理工大学, 2018. SUN M M. SOH estimation of lithium ion battery based on data driven method[D]. Kunming:Kunming University of Science and Technology, 2018.
[18] 卢明哲. 动力电池SOH估计及故障预测方法研究[D]. 北京:北京工业大学, 2015. LU M Z. SOH estimation and failure prediction method research for power batteries[D]. Beijing:Beijing University of Technology, 2015.
[19] 张洋. 基于相关向量机的锂离子电池在线剩余寿命预测方法研究[D]. 长沙:国防科学技术大学, 2016. ZHANG Y. Online remaining useful life prediction of lithium-ion batteries based on relevance vector machine[D]. Changsha:National University of Defense Technology, 2016.
[20] 刘皓, 胡明昕, 朱一亨, 等. 基于遗传算法和支持向量回归的锂电池健康状态预测[J]. 南京理工大学学报, 2018, 42(3):329-334. LIU H, HU M X, ZHU Y H, et al. Prediction for state of health of lithium-ion batteries by genetic algorithm and support vector regression[J]. Journal of Nanjing University of Science and Technology, 2018, 42(3):329-334.
[21] NUHIC, ADNAN, TERZIMEHIC, et al. Health diagnosis and remaining useful life prognostics of lithium-ion batteries using datadriven methods[J]. Journal of Power Sources, 2013, 239:680-688.
[22] WENG C, Cui Y, Sun J, et al. On-board state of health monitoring of lithium-ion batteries using incremental capacity analysis with support vector regression[J]. Journal of Power Sources, 2013, 235:36-44.
[23] 何志昆, 刘光斌, 赵曦晶, 等. 高斯过程回归方法综述[J]. 控制与决策, 2013, 28(8):1121-1129. HE Z K, LIU G B, ZHAO X J, et al. Overview of Gaussian process regression[J]. Control and Decision, 2013, 28(8):1121-1129.
[24] 何晶. 基于高斯过程回归的锂电池健康预测[D]. 北京:北京交通大学, 2018. HE J. Lithium-ion battery health prediction based on Gaussian process regression[D]. Beijing:Beijing Jiaotong University, 2018
[25] LIU D, PANG J, ZHOU J, et al. Prognostics for state of health estimation of lithium-ion batteries based on combination Gaussian process functional regression[J]. Microelectronics Reliability, 2013, 53(6):832-839.
[26] 周頔. 基于日常片段充电数据的锂电池健康状态实时评估方法研究[J]. 中国电机工程学报, 2019, 39(1):105-111. ZHOU D. Real-time SOH estimation algorithm for lithium-ion batteries based on daily segment charging data[J]. Proceedings of the CSEE, 2019, 39(1):105-111.
[27] YOU G W, PARK S, OH D. Real-time state-of-health estimation for electric vehicle batteries:A data-driven approach[J]. Applied Energy, 2016, 176:92-103. |