Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (1): 310-318.doi: 10.19799/j.cnki.2095-4239.2020.0253
• Energy Storage System and Engineering • Previous Articles Next Articles
Tao YIN1,2,3(), Lili ZHENG1,2,3, Longzhou JIA1,2,3, Yan FENG1,2,3, Dong WANG1,2,3, Zuoqiang DAI1,2,3()
Received:
2020-07-29
Revised:
2020-09-20
Online:
2021-01-05
Published:
2021-01-08
CLC Number:
Tao YIN, Lili ZHENG, Longzhou JIA, Yan FENG, Dong WANG, Zuoqiang DAI. Overview of research on float charging for lithium-ion batteries[J]. Energy Storage Science and Technology, 2021, 10(1): 310-318.
1 | 周芳, 刘思, 侯敏. 锂电池技术在储能领域的应用与发展趋势[J]. 电源技术, 2019, 43(2): 348-350. |
ZHOU Fang, LIU Si, HOU Min. Application and development trend of lithium battery technology in the field of energy storage[J]. Chinese Journal of Power Sources, 2019, 43(2): 348-350. | |
2 | HUNTER P M, ANBUKY A H. VRLA Battery virtual reference electrode: Battery float charge analysis[J]. IEEE Transactions on Energy Conversion, 2008, 23(3): 879-886. |
3 | GOODENOUGH J B, PARK K. The Li-ion rechargeable battery: A perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176. |
4 | YUAN Xianxia, LIU Hansan, ZHANG Jiujun. Lithium-ion batteries: Advanced materials and technologies[M]. USA: CRC Press, 2011: 35-62. |
5 | 姚雷, 王震坡. 锂离子动力电池充电方式的研究[J]. 汽车工程, 2015, 37: 72-77. |
YAO Lei, WANG Zhenpo. Research on Li-ion power battery charging methods[J]. Automotive Engineering, 2015, 37: 72-77. | |
6 | NGUYEN T M, DILLENSEGER G, GLAIZE C, et al. Between floating and intermittent floating: Low-current self-discharge under compensation[C]//International Telecommunications Energy Conference, 2008. |
7 | 乔瑞兴. 基于蓄电池阶段性浮充的可行性研究[C]//2017年中国通信能源会议论文集, 中国通信学会通信电源委员会, 2017: 205-207. |
QIAO Ruixing. Feasibility study based on phased floating charging of batteries[C]//Proceedings of 2017 China Communication Energy Conference, Communication Power Supply Committee of China Institute of Communications, 2017: 205-207. | |
8 | 张太杰. 通信基站应急后备电源供电系统研究[J]. 通信电源技术, 2020, 37(2): 187-188. |
ZHANG Taijie. Research on the emergency backup power supply system of communication base station[J]. Telecom Power Technologies, 2020, 37(2): 187-188. | |
9 | TIPPMANN S, WALPER D, BALBOA L, et al. Low-temperature charging of lithium-ion cells (I): Electrochemical modeling[J]. Journal of Power Sources, 2014, 252: 305-316. |
10 | 李丽珍, 戴海峰. 锂离子电池低温充电老化特性及影响因子分析[J]. 机电一体化, 2018, 24(Z1): 18-26. |
LI Lizhen, DAI Haifeng. Low-temperature charging aging characteristics and influencing factors analysis of lithium-ion batteries[J]. Mechatronics, 2018, 24(Z1): 18-26. | |
11 | WALDMANN T, WILKA M, KASPER M, et al. Temperature dependent ageing mechanisms in lithium-ion batteries-a post-mortem study[J]. Journal of Power Sources, 2014, 262: 129-135. |
12 | 齐明辉, 王政, 严家明, 等. 浮充保护型磷酸铁锂电池在煤矿中的应用[J]. 煤矿安全, 2019, 50(2): 113-116. |
QI Minghui, WANG Zheng, YAN Jiaming, et al. Application of floating-charge protection type lithium iron phosphate battery in coal mine[J]. Safety in Coal Mines, 2019, 50(2): 113-116. | |
13 | 李懿洋. 锂离子电池低温充放电循环与高温浮充下的失效机理研究[D]. 北京: 清华大学, 2017. |
LI Yiyang. Study on the failure mechanism of lithium-ion batteries under low-temperature charge-discharge cycles and high-temperature float charge[D]. Beijing: Tsinghua University, 2017. | |
14 | TAKAHASHI M, SHODAI T. Float charging performance of lithium ion batteries with LiFePO4 cathode[J]. Electrochemical Society of Japan, 2010, 78(5): 342-344. |
15 | 吴赟, 蒋新华, 解晶莹. 锂离子电池循环寿命快速衰减的原因[J]. 电池, 2009, 39(4): 206-207. |
WU Yun, JIANG Xinhua, XIE Jingying. The reasons of rapid decline in cycle life of Li-ion battery[J]. Battery Bimonthly, 2009, 39(4): 206-207. | |
16 | 冯蕾, 朱威力. 基站蓄电池的管理与维护[J]. 产业与科技论坛, 2014, 13(11): 252-253. |
FENG Lei, ZHU Weili. Management and maintenance of base station batteries[J]. Industrial Science Tribune, 2014, 13(11): 252-253. | |
17 | HIROOKA M, SEKIYA T, OMOMO Y, et al. Degradation mechanism of LiCoO2 under float charge conditions and high temperatures[J]. Electrochimica Acta, 2019, 320: doi: 10.1016/j.electacta.2019.134596. |
18 | XIA J, NELSON K J, LU Z H, et al. Impact of electrolyte solvent and additive choices on high voltage Li-ion pouch cells[J]. Journal of Power Sources, 2016, 329: 387-397. |
19 | YU Ziyang, BAI Maohui, SONG Wenfeng, et al. Influence of lithium difluorophosphate additive on the high voltage LiNi0.8Co0.1Mn0.1O2/graphite battery[J]. Ceramics International, 2021, 47(1): 157-162. |
20 | HIROOKA M, SEKIYA T, OMOMO Y, et al. Improvement of float charge durability for LiCoO2 electrodes under high voltage and storage temperature by suppressing O1-Phase transition[J]. Journal of Power Sources, 2020, 463: doi: 10.1016/j.jpowsour.2020.228127. |
21 | 杜旭浩, 李秉宇, 苗俊杰, 等. 变电站蓄电池状态监测及火灾防控技术研究[J]. 电源技术, 2020, 44(3): 438-442. |
DU Xuhao, LI Bingyu, MIAO Junjie, et al. Research on battery status monitoring and fire prevention and control technology in substations[J]. Chinese Journal of Power Sources, 2020, 44(3): 438-442. | |
22 | 桂长清. 密封铅蓄电池浮充电压的选择与控制[J]. 通信电源技术, 2000(3): 6-9. |
GUI Changqing. Selection and control of floating charge voltage for sealed lead batteries[J]. Telecom Power Technologies, 2000(3): 6-9. | |
23 | 康彩云, 张乐, 张方建, 等. 磷酸铁锂电池在移动通信系统中的应用研究[C]//通信电源新技术论坛2011通信电源学术研讨会论文集, 中国通信学会通信电源委员会, 2011: 261-267. |
KANG Caiyun, ZHANG Le, ZHANG Fangjian, et al. Application research of lithium iron phosphate battery in mobile communication system[C]//Communication Power New Technology Forum 2011 Communication Power Symposium Proceedings, Communication Power Supply Committee of China Institute of Communications, 2011: 261-267. | |
24 | WEI Zengfu, ZHONG Guobin, SU Wei, et al. Float-charging characteristics of lithium iron phosphate battery based on direct-current power supply system in substation[J]. Journal of Energy Engineering, 2016, 142(1): doi: 10.1061/(ASCE)EY.1943-7897.0000273. |
25 | 王立强, 王玮, 王占国, 等. 轨道交通用钛酸锂电池不一致性研究[J]. 电源技术, 2017, 41(2): 195-197+218. |
WANG Liqiang, WANG Wei, WANG Zhanguo, et al. Research on the inconsistency of lithium titanate batteries for rail transit[J]. Chinese Journal of Power Sources, 2017, 41(2): 195-197+218. | |
26 | 郭光朝, 李相俊, 张亮, 等. 单体电压不一致性对锂电池储能系统容量衰减的影响[J]. 电力建设, 2016, 37(11): 23-28. |
GUO Guangchao, LI Xiangjun, ZHANG Liang, et al. The influence of cell voltage inconsistency on the capacity attenuation of lithium battery energy storage system[J]. Electric Power Construction, 2016, 37(11): 23-28. | |
27 | 袁阳, 蔡久青, 汪文涛, 等. 后备锂电池组被动均衡系统设计[J]. 船电技术, 2019, 39(12): 55-57+61. |
YUAN Yang, CAI Jiuqing, WANG Wentao, et al. Design of passive equalization system for backup lithium battery packs[J]. Marine Electric Electronic Engineering, 2019, 39(12): 55-57+61. | |
28 | 杨忠亮, 蒋新华, 於崇干. 磷酸铁锂蓄电池浮充特性提升策略研究[J]. 电器与能效管理技术, 2016(5): 72-75. |
YANG Zhongliang, JIANG Xinhua, YU Chongqian. Research on the improvement strategy of floating charge characteristics of lithium iron phosphate batteries[J]. Electrical Energy Management Technology, 2016(5): 72-75. | |
29 | 段周敬, 任晓明, 陈道. 轨交储能锂电池主被动均衡策略的研究及应用[J]. 电源技术, 2019, 43(8): 1305-1308+1315. |
DUAN Zhoujing, REN Xiaoming, CHEN Dao. Research and application of active and passive balancing strategies for rail transit energy storage lithium batteries[J]. Chinese Journal of Power Sources, 2019, 43(8): 1305-1308+1315. | |
30 | 李慧芳, 高俊奎, 李飞, 等. 锂离子电池浮充测试的鼓胀原因分析及改善[J]. 电源技术, 2013, 37(12): 2123-2126. |
LI Huifang, GAO Junkui, LI Fei, et al. Cause analysis and improvement of swelling in floating charge test of lithium-ion battery[J]. Chinese Journal of Power Sources, 2013, 37(12): 2123-2126. | |
31 | 赵伟, 肖祥, 梅成林. 磷酸铁锂/石墨电池浮充工况下的失效机理研究[J]. 电源技术, 2020, 44(4): 492-495. |
ZHAO Wei, XIAO Xiang, MEI Chenglin. Study on the failure mechanism of lithium iron phosphate/graphite battery under floating charging conditions[J]. Chinese Journal of Power Sources, 2020, 44(4): 492-495. | |
32 | 孔令丽, 张克军, 夏晓萌, 等. 高电压锂离子电池高温浮充性能影响因素分析与改善[J]. 储能科学与技术, 2019, 8(6): 1165-1170. |
KONG Lingli, ZHANG Kejun, XIA Xiaomeng, et al. Analysis and improvement of factors affecting the high-temperature float charging performance of high-voltage lithium-ion batteries[J]. Energy Storage Science and Technology, 2019, 8(6): 1165-1170. | |
33 | TSUJIKAWA T, YABUTA K, MATSUSHITA T, et al. A study on the cause of deterioration in float-charged lithium-ion batteries using LiMn2O4 as a cathode active material[J]. Journal of the Electrochemical Society, 2011, 158(3): A322-A325. |
34 | YI Shouzhong, WANG Bo, CHEN Ziang, et al. The difference in aging behaviors and mechanisms between floating charge and cycling of LiFePO4/graphite batteries [J]. Ionics, 2019, 25(5): 2139-2145. |
[1] | Haitao LI, Lingli KONG, Xin ZHANG, Chuanjun YU, Jiwei WANG, Lin XU. The effects of N/P design on the performances of Ni-rich NCM/Gr lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(7): 2040-2045. |
[2] | Zhiying LU, Shan JIANG, Quanlong LI, Kexin MA, Teng FU, Zhigang ZHENG, Zhicheng LIU, Miao LI, Yongsheng LIANG, Zhifei DONG. Open-circuit voltage variation during charge and shelf phases of an all-vanadium liquid flow battery [J]. Energy Storage Science and Technology, 2022, 11(7): 2046-2050. |
[3] | Shunmin YI, Linbo XIE, Li PENG. Remaining useful life prediction of lithium-ion batteries based on VF-DW-DFN [J]. Energy Storage Science and Technology, 2022, 11(7): 2305-2315. |
[4] | Qingwei ZHU, Xiaoli YU, Qichao WU, Yidan XU, Fenfang CHEN, Rui HUANG. Semi-empirical degradation model of lithium-ion battery with high energy density [J]. Energy Storage Science and Technology, 2022, 11(7): 2324-2331. |
[5] | Yuzuo WANG, Jin WANG, Yinli LU, Dianbo RUAN. Study on the effects of pore structure on lithium-storage performances for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(7): 2023-2029. |
[6] | Wenlan YE, Ming ZHAO, Mingyu HU, Yang TIAN. Analysis of heat storage and release performance of tube bundle phase change heat accumulator [J]. Energy Storage Science and Technology, 2022, 11(7): 2151-2160. |
[7] | Wei KONG, Jingtao JIN, Xipo LU, Yang SUN. Study on cooling performance of lithium ion batteries with symmetrical serpentine channel [J]. Energy Storage Science and Technology, 2022, 11(7): 2258-2265. |
[8] | YAN Qiaoyi, WU Feng, CHEN Renjie, LI Li. Recovery and resource recycling of graphite anode materials for spent lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1760-1771. |
[9] | WU Yida, ZHANG Yi, ZHAN Yuanjie, GUO Yaqi, ZHANG liao, LIU Xingjiang, YU Hailong, ZHAO Wenwu, HUANG Xuejie. The effect of B2O3 modification on the electrochemical properties of LiCoO2 cathode [J]. Energy Storage Science and Technology, 2022, 11(6): 1687-1692. |
[10] | WANG Yuzuo, DENG Miao, WANG Jin, YANG Bin, LU Yinli, JIN Ge, RUAN Dianbo. Study on the effects of carbonization temperature on lithium-storage kinetics for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(6): 1715-1724. |
[11] | YU Chunhui, HE Ziying, ZHANG Chenxi, LIN Xianqing, XIAO Zhexi, WEI Fei. The analyses and suppressing strategies of silicon anode with the electrolyte [J]. Energy Storage Science and Technology, 2022, 11(6): 1749-1759. |
[12] | WANG Can, MA Pan, ZHU Guoliang, WEI Shuimiao, YANG Zhilu, ZHANG Zhiyu. Effect of lithium acrylic-coated nature graphite on its electrochemical properties [J]. Energy Storage Science and Technology, 2022, 11(6): 1706-1714. |
[13] | LIU Hangxin, CHEN Xiantao, SUN Qiang, ZHAO Chenxi. Cycle performance characteristics of soft pack lithium-ion batteries under vacuum environment [J]. Energy Storage Science and Technology, 2022, 11(6): 1806-1815. |
[14] | Jun WANG, Lin RUAN, Yanliang QIU. Research progress on rapid heating methods for lithium-ion battery in low-temperature [J]. Energy Storage Science and Technology, 2022, 11(5): 1563-1574. |
[15] | Liangtao XIONG, Jifen WANG, Huaqing XIE, Xuelai ZHANG. Effect of vacancy defects on thermal conductivity of single-layer graphene by molecular dynamics [J]. Energy Storage Science and Technology, 2022, 11(5): 1322-1330. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||