Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (5): 1428-1442.doi: 10.19799/j.cnki.2095-4239.2020.0272
Previous Articles Next Articles
Feng TIAN(), Wenbin QI, Hongxiang JI, Mengyu TIAN, Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Yida WU, Yuanjie ZHAN, Zhou JIN, Yong YAN, Liubin BEN, Hailong YU, Xuejie HUANG()
Received:
2020-08-17
Revised:
2020-08-20
Online:
2020-09-05
Published:
2020-09-08
Contact:
Xuejie HUANG
E-mail:fengtiannn@163.com;xjhuang@jphy.ac.an
CLC Number:
Feng TIAN, Wenbin QI, Hongxiang JI, Mengyu TIAN, Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Yida WU, Yuanjie ZHAN, Zhou JIN, Yong YAN, Liubin BEN, Hailong YU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries(Jun. 01, 2020 to Jul. 31, 2020)[J]. Energy Storage Science and Technology, 2020, 9(5): 1428-1442.
1 | QIU Q Q, SHADIKE Z, WANG Q C, et al. Improving the electrochemical performance and structural stability of the LiNi0.8Co0.15Al0.05O2 cathode material at high-voltage charging through Ti substitution[J]. ACS Applied Materials & Interfaces, 2019, 11(26): 23213-23221. |
2 | ZHU J, SHARIFI-ASL S, GARCIA J C, et al. Atomic-level understanding of surface reconstruction based on Li NixMnyCo1-x-y O-2 single-crystal studies[J]. ACS Applied Energy Materials, 2020, 3(5): 4799-4811. |
3 | ALVARADO J, WEI C, NORDLUND D, et al. Thermal stress-induced charge and structure heterogeneity in emerging cathode materials[J]. Materials Today, 2020, 35: 87-98. |
4 | ZHU Z, YU D, SHI Z, et al. Gradient-morph LiCoO2 single crystals with stabilized energy density above 3400 W·h/L[J]. Energy & Environmental Science, 2020, 13(6): 1865-1878. |
5 | PANG P, WANG Z, DENG Y, et al. Delayed phase transition and improved cycling/thermal stability by spinel LiNi0.5Mn1.5O4 modification for LiCoO2 cathode at high voltages[J]. ACS Applied Materials & Interfaces, 2020, 12(24): 27339-27349. |
6 | CAO H, DU F, ADKINS J, et al. Al-doping induced superior lithium ion storage capability of LiNiO2 spheres[J]. Ceramics International, 2020, 46(12): 20050-20060. |
7 |
LI W, LEE S, MANTHIRAM A. High-nickel NMA: A cobalt-free alternative to NMC and NCA cathodes for lithium-ion batteries[J]. Advanced Materials, 2020, doi: 10.1002/adma.202002718.
doi: 10.1002/adma.202002718 |
8 | RYU H H, PARK N Y, SEO J H, et al. A highly stabilized Ni-rich NCA cathode for high-energy lithium-ion batteries[J]. Materials Today, 2020, 36: 73-82. |
9 | CHEN Q, PEI Y, CHEN H, et al. Highly reversible oxygen redox in layered compounds enabled by surface polyanions[J]. Nature Communications, 2020, 11(1): doi: 10.1038/s41467-020-17126-3. |
10 | SHIMODA K, YAZAWA K, MATSUNAGA T, et al. Sequential delithiation behavior and structural rearrangement of a nanoscale composite-structured Li1.2Ni0.2Mn0.6O2 during charge-discharge cycles[J]. Scientific Reports, 2020, 10(1): doi: 10.1038/s41598-020-66411-0. |
11 | LIU X, TAN Y, WANG W, et al. Conformal prelithiation nanoshell on LiCoO2 enabling high-energy lithium-ion batteries[J]. Nano Letters, 2020, 20(6): 4558-4565. |
12 | HATAKEYAMA-SATO K, AKAHANE T, GO C, et al. Ultrafast charge/discharge by a 99.9% conventional lithium iron phosphate electrode containing 0.1% redox-active fluoflavin polymer[J]. ACS Energy Letters, 2020, 5(5): 1712- 1717. |
13 | LI X, JIANG F, QU K, et al. First atomic-scale insight into degradation in lithium iron phosphate cathodes by transmission electron microscopy[J]. Journal of Physical Chemistry Letters, 2020, 11(12): 4608-4617. |
14 | CHEN J, ZHAO J, LEI L, et al. Dynamic intelligent Cu current collectors for ultrastable lithium metal anodes[J]. Nano Letters, 2020, 20(5): 3403-3410. |
15 |
FU L, WAN M, ZHANG B, et al. A lithium metal anode surviving battery cycling above 200 degrees C[J]. Advanced Materials, 2020, doi: 10.1002/adma.202000952.
doi: 10.1002/adma.202000952 |
16 |
GAO Y, ROJAS T, WANG K, et al. Low-temperature and high-rate-charging lithium metal batteries enabled by an electrochemically active monolayer-regulated interface[J]. Nature Energy, 2020, doi: 10.1038/s41560-020-0640-7.
doi: 10.1038/s41560-020-0640-7 |
17 |
ZHANG L, YIN X, SHEN S, et al. Simultaneously homogenized electric field and ionic flux for reversible ultrahigh-areal-capacity Li deposition[J]. Nano Letters, 2020, doi: 10.1021/acs.nanolett.0c00797.
doi: 10.1021/acs.nanolett.0c00797 |
18 |
ADAIR K R, BANIS M N, ZHAO Y, et al. Temperature-dependent chemical and physical microstructure of Li metal anodes revealed through synchrotron-based imaging techniques[J]. Advanced Materials, 2020, doi: 10.1002/adma.202002550.
doi: 10.1002/adma.202002550 |
19 | FU C, VENTURI V, KIM J, et al. Universal chemomechanical design rules for solid-ion conductors to prevent dendrite formation in lithium metal batteries[J]. Nature Materials, 2020, 19(7): 758-766. |
20 | BAUER D, LUISIER M. Influence of disorder and surface roughness on the electrical and thermal properties of lithiated silicon nanowires[J]. Journal of Applied Physics, 2020, 127(13): doi: 10.1063/5.0002980. |
21 | PELED E, SCHNEIER D, SHAHAM Y, et al. Understanding the spontaneous reactions between oxide-free silicon and lithium-battery electrolytes[J]. Journal of the Electrochemical Society, 2019, 166(10): A2091-A2095. |
22 | LI Z, ZHANG Y, LIU T, et al. Silicon Anode with high initial coulombic efficiency by modulated trifunctional binder for high-areal-capacity lithium-ion batteries[J]. Advanced Energy Materials, 2020, 10(20): doi: 10.1002/aenm.201903110. |
23 |
MA L, MENG J Q, CHENG Y J, et al. Poly(siloxane imide) binder for silicon-based lithium-ion battery anodes via rigidness/softness coupling[J]. Chemistry, an Asian Journal, 2020, doi: 10.1002/asia.202000633.
doi: 10.1002/asia.202000633 |
24 | SCHNABEL M, HARVEY S P, ARCA E, et al. Surface SiO2 thickness controls uniform-to-localized transition in lithiation of silicon anodes for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(24): 27017-27028. |
25 | TOIGO C, ARBIZZANI C, PETTINGER K H, et al. Study on different water-based binders for Li4Ti5O12 electrodes[J]. Molecules, 2020, 25(10): doi: 10.3390/molecules25102443. |
26 | BOEBINGER M G, YAREMA O, YAREMA M, et al. Spontaneous and reversible hollowing of alloy anode nanocrystals for stable battery cycling[J]. Nature Nanotechnology, 2020, 15(6): 475-481. |
27 | ARNOLD W, BUCHBERGER D A, LI Y, et al. Halide doping effect on solvent-synthesized lithium argyrodites Li6PS5X (X=Cl, Br, I) superionic conductors[J]. Journal of Power Sources, 2020, 464: doi: 10.1016/j.jpowsour.2020.228158. |
28 | KATAOKA K. Oxide single crystals with high lithium-ion conductivity as solid electrolytes for all-solid-state lithium secondary battery applications[J]. Journal of the Ceramic Society of Japan, 2020, 128(1): 7-18. |
29 | AHMAD N, ZHOU L, FAHEEM M, et al. Enhanced air stability and high Li-ion conductivity of Li6.988P2.994Nb0.2S10.934O0.6 glass-ceramic electrolyte for all-solid-state lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(19): 21548-21558. |
30 |
OTOYAMA M, SAKUDA A, TATSUMISAGO M, et al. Sulfide electrolyte suppressing side reactions in composite positive electrodes for all-solid-state lithium batteries[J]. ACS Applied Materials & Interfaces, 2020, doi: 10.1021/acsami.0c05050.
doi: 10.1021/acsami.0c05050 |
31 | BRINEK M, HIEBL C, WILKENING H M R. Understanding the origin of enhanced Li-ion transport in nanocrystalline argyrodite-type Li6PS5I[J]. Chemistry of Materials : A publication of the American Chemical Society, 2020, 32(11): 4754-4766. |
32 | JIANG H, HAN Y, WANG H, et al. Li2S-Li3PS4 (LPS) composite synthesized by liquid-phase shaking for all-solid-state lithium-sulfur batteries with high performance[J]. Energy Technology, 2020, 8(6): doi: 10.1002/ente.202000023. |
33 |
MINAFRA N, KRAFT M A, BERNGES T, et al. Local charge inhomogeneity and lithium distribution in the superionic argyrodites Li6PS5X (X=Cl, Br, I)[J]. Inorganic Chemistry, 2020, doi: 10.1021/acs.inorgchem.0c01504.
doi: 10.1021/acs.inorgchem.0c01504 |
34 | MUKRA T, PELED E. Elucidation of the losses in cycling lithium-metal anodes in carbonate-based electrolytes[J]. Journal of the Electrochemical Society, 2020, 167(10): doi:10.1149/1945-7111/ab981b. |
35 |
LIU H, NAYLOR A J, MENON A S, et al. Understanding the roles of tris(trimethylsilyl) phosphite (TMSPi) in LiNi0.8Mn0.1Co0.1O2 (NMC811)/silicon-graphite (Si-Gr) lithium-ion batteries[J]. Advanced Materials Interfaces, 2020, doi: 10.1002/admi.202000277.
doi: 10.1002/admi.202000277 |
36 | HAGOS T T, SU W N, HUANG C J, et al. Developing high-voltage carbonate-ether mixed electrolyte via anode-free cell configuration[J]. Journal of Power Sources, 2020, 461: doi: 10.1016/j.jpowsour.2020.228053. |
37 | JOTE B A, BEYENE T T, SAHALIE N A, et al. Effect of diethyl carbonate solvent with fluorinated solvents as electrolyte system for anode free battery[J]. Journal of Power Sources, 2020, 461: doi: 10.1016/j.jpowsour.2020.228102. |
38 |
CHEN J, FAN X, LI Q, et al. Electrolyte design for LiF-rich solid-electrolyte interfaces to enable high-performance microsized alloy anodes for batteries[J]. Nature Energy, 2020, doi: 10.1038/s41560-020-0601-1.
doi: 10.1038/s41560-020-0601-1 |
39 | BJORKLUND E, GOTTLINGER M, EDSTROM K, et al. Sulfolane-based ethylene carbonate-free electrolytes for LiNi0.6Mn0.2Co0.2O2-Li4Ti5O12 batteries[J]. Batteries & Supercaps, 2020, 3(2): 201-207. |
40 | HOLOUBEK J, YU M, YU S, et al. An all-fluorinated ester electrolyte for stable high-voltage Li metal batteries capable of ultra-low-temperature operation[J]. ACS Energy Letters, 2020, 5(5): 1438-1447. |
41 | HAN J G, HWANG E, KIM Y, et al. Dual-functional electrolyte additives toward long-cycling lithium-ion batteries: Ecofriendly designed carbonate derivatives[J]. ACS Applied Materials & Interfaces, 2020, 12(21): 24479-24487. |
42 | ZOU Y, SHEN Y, WU Y, et al. A Designed durable electrolyte for high-voltage lithium-ion batteries and mechanism analysis[J]. Chemistry-a European Journal, 2020, 26(35): 7930-7936. |
43 | HAN J G, HWANG C, KIM S H, et al. An antiaging electrolyte additive for high-energy-density lithium-ion batteries[J]. Advanced Energy Materials, 2020,10(20): doi: 10.1002/aenm.202000563. |
44 |
DUAN K, NING J, ZHOU L, et al. 1-(2-Cyanoethyl)pyrrole enables excellent battery performance at high temperature via the synergistic effect of Lewis base and C triple bond, length as m-dash N functional groups[J]. Chemical Communications (Cambridge, England), 2020, doi: 10.1039/d0cc01528h.
doi: 10.1039/d0cc01528h |
45 | GLASER R, WU F, REGISTER E, et al. Tuning low concentration electrolytes for high rate performance in lithium-sulfur batteries[J]. Journal of the Electrochemical Society, 2020, 167(10): doi: 10.1149/1945-7111/ab7183. |
46 | GU Y, FANG S, ZHANG X, et al. A non-flammable electrolyte for lithium-ion batteries containing lithium difluoro(oxalato)borate, propylene carbonate and tris(2,2,2-trifluoroethyl)phosphate[J]. Journal of the Electrochemical Society, 2020, 167(8): doi: 10.1149/1945-7111/ab8ed3. |
47 | HAN X, SUN J. Design of a LiF-rich solid electrolyte interface layer through salt-additive chemistry for boosting fast-charging phosphorus-based lithium ion battery performance[J]. Chemical Communications (Cambridge, England), 2020, 56(45): 6047-6049. |
48 |
MA Q, ZHANG X, WANG A, et al. Stabilizing solid electrolyte interphases on both anode and cathode for high areal capacity, high-voltage lithium metal batteries with high li utilization and lean electrolyte[J]. Advanced Functional Materials, 2020, doi: 10.1002/adfm.202002824.
doi: 10.1002/adfm.202002824 |
49 | SUN H, ZHU G, ZHU Y, et al. High-safety and high-energy-density lithium metal batteries in a novel ionic-liquid electrolyte[J]. Advanced Materials, 2020, 32(26): doi: 10.1002/adma.202001741. |
50 | KIM Y K, KIM Y, BAE J, et al. Implanting a preferential solid electrolyte interphase layer over anode electrode of lithium ion batteries for highly enhanced Li plus diffusion properties[J]. Journal of Energy Chemistry, 2020,48:285-92. |
51 | FENG W, LAI Z, DONG X, et al. Garnet-based all-ceramic lithium battery enabled by Li2.985B0.005OCl solder[J]. Iscience, 2020, 23(5): doi: 10.1016/j.isci.2020.101071. |
52 | LIU Q, ZHOU D, SHANMUKARAJ D, et al. Self-healing janus interfaces for high-performance LAGP-based lithium metal batteries[J]. ACS Energy Letters, 2020, 5(5): 1456-1464. |
53 | JAUMAUX P, LIU Q, ZHOU D, et al. Deep-eutectic-solvent-based self-healing polymer electrolyte for safe and long-life lithium-metal batteries[J]. Angewandte Chemie-International Edition, 2020, 59(23): 9134-9142. |
54 | KIM M J, PARK J W, KIM B G, et al. Facile fabrication of solution-processed solid-electrolytes for high-energy-density all-solid-state-batteries by enhanced interfacial contact[J]. Scientific Reports, 2020, 10(1): doi: 10.1038/s41598-020-68885-4. |
55 | CHENG Z, XIE M, MAO Y, et al. Building lithiophilic ion-conduction highways on garnet-type solid-state Li+ conductors[J]. Advanced Energy Materials, 2020, 10(24): doi: 10.1002/aenm.201904230. |
56 |
YUE J, HUANG Y, LIU S, et al. Rational designed mixed-conductive sulfur cathodes for all-solid-state lithium batteries[J]. ACS Applied Materials & Interfaces, 2020, doi: 10.1021/acsami.0c08564.
doi: 10.1021/acsami.0c08564 |
57 | DENG T, JI X, ZHAO Y, et al. Tuning the anode-electrolyte interface chemistry for garnet-based solid-state Li metal batteries[J]. Advanced Materials, 2020, 32(23): doi: 10.1002/adma.202000030. |
58 | SHI K, WAN Z, YANG L, et al. In situ construction of an ultra-stable conductive composite interface for high-voltage all-solid-state lithium metal batteries[J]. Angewandte Chemie-International Edition, 2020, 59(29): 11784-11788. |
59 | DUAN L, KONG W, YAN W, et al. Improving the capacity and cycling-stability of Lithium-sulfur batteries using self-healing binders containing dynamic disulfide bonds[J]. Sustainable Energy & Fuels, 2020, 4(6): 2760-2767. |
60 | LI S, JIANG J, DONG Z, et al. Ferroconcrete-inspired construction of self-supporting Li2S cathode for high-performance lithium-sulfur batteries[J]. Microporous and Mesoporous Materials, 2020, 293: doi: 10.1016/j.micromeso.2019.109822. |
61 |
LU C, CHEN Y, YANG Y, et al. Single-atom catalytic materials for lean-electrolyte ultrastable lithium-sulfur batteries[J]. Nano Letters, 2020, doi: 10.1021/acs.nanolett.0c02167.
doi: 10.1021/acs.nanolett.0c02167 |
62 | TAMATE R, SARUWATARI A, NAKANISHI A, et al. Excellent dispersibility of single-walled carbon nanotubes in highly concentrated electrolytes and application to gel electrode for Li-S batteries[J]. Electrochemistry Communications, 2019, 109: doi: 10.1016/j.elecom.2019.106598. |
63 | YANG T, LIU K, REN R, et al. Uniform growth of Li2S promoted by an organophosphorus-based mediator for high rate Li-S batteries[J]. Chemical Engineering Journal, 2020, 381: doi: 10.1016/j.cej.2019.122685. |
64 | ZHAO M, PENG H J, LI B Q, et al. Electrochemical phase evolution of metal-based pre-catalysts for high-rate polysulfide conversion[J]. Angewandte Chemie-International Edition, 2020, 59(23): 9011-9017. |
65 | NANDA S, BHARGAV A, MANTHIRAM A. Anode-free, lean-electrolyte lithium-sulfur batteries enabled by tellurium-stabilized lithium deposition[J]. Joule, 2020, 4(5): 1121-1135. |
66 |
ZHAO C, XU G L, ZHAO T, et al. Beyond polysulfides shuttle and Li dendrite formation: Addressing the sluggish S redox kinetics for practical high energy Li-S batteries[J]. Angewandte Chemie (International ed in English), 2020, doi: 10.1002/anie.202007159.
doi: 10.1002/anie.202007159 |
67 | ZHOU S, LIU J, XIE F, et al. A "boxes in fibers" strategy to construct a necklace-like conductive network for high-rate and high-loading lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2020, 8(22): 11327-11336. |
68 | SUN Z, VIJAY S, HEENEN H H, et al. Catalytic polysulfide conversion and physiochemical confinement for lithium-sulfur batteries[J]. Advanced Energy Materials, 2020, 10(22): doi: 10.1002/aenm.201904010. |
69 | ZHOU S, YANG S, DING X, et al. Dual-regulation strategy to improve anchoring and conversion of polysulfides in lithium-sulfur batteries[J]. ACS Nano, 2020, 14(6): 7538-7551. |
70 |
DELAPORTE N, DARWICHE A, LEONARD M, et al. Facile formulation and fabrication of the cathode using a self-lithiated carbon for all-solid-state batteries[J]. Scientific Reports, 2020, doi: 10.1038/s41598-020-68865-8.
doi: 10.1038/s41598-020-68865-8 |
71 | NOMURA Y, YAMAMOTO K, FUJII M, et al. Dynamic imaging of lithium in solid-state batteries by operando electron energy-loss spectroscopy with sparse coding[J]. Nature Communications, 2020,11(1): doi: 10.1038/s41467-020-16622-w. |
72 |
WANG Z, TANG Y, ZHANG L, et al. In situ TEM observations of discharging/charging of solid-state lithium-sulfur batteries at high temperatures[J]. Small, 2020, doi: 10.1002/smll.202001899.
doi: 10.1002/smll.202001899 |
73 |
JUN S, NAM Y J, KWAK H, et al. Operando differential electrochemical pressiometry for probing electrochemo-mechanics in all-solid-state batteries[J]. Advanced Functional Materials, 2020, doi: 10.1002/adfm.202002535.
doi: 10.1002/adfm.202002535 |
74 | CADIOU F, DOUILLARD T, BESNARD N, et al. Multiscale characterization of composite electrode microstructures for high density lithium-ion batteries guided by the specificities of their electronic and ionic transport mechanisms[J]. Journal of the Electrochemical Society, 2020, 167(10): doi: 10.1149/1945-7111/ab975a. |
75 |
YU C, LIN X, CHEN X, et al. Suppressing the side reaction by a selective blocking layer to enhance the performance of Si-based anodes[J]. Nano Letters, 2020, doi: 10.1021/acs.nanolett.0c01394.
doi: 10.1021/acs.nanolett.0c01394 |
76 | KIMURA Y, TOMURA A, FAKKAO M, et al. 3D operando imaging and quantification of inhomogeneous electrochemical reactions in composite battery electrodes[J]. Journal of Physical Chemistry Letters, 2020, 11(9): 3629-3636. |
77 | WEBER R, LOULI A J, PLUCKNETT K P, et al. Resistance growth in lithium-ion pouch cells with LiNi0.80Co0.15Al0.05O2 positive electrodes and proposed mechanism for voltage dependent charge-transfer resistance[J]. Journal of the Electrochemical Society, 2019, 166(10): A1779-A1784. |
78 | GENG L, WOOD D L, LEWIS S A, et al. High accuracy in-situ direct gas analysis of Li-ion batteries[J]. Journal of Power Sources, 2020, 466: doi: 10.1016/j.jpowsour.2020.228211. |
79 |
LEISSING M, WINTER M, WIEMERS-MEYER S, et al. A method for quantitative analysis of gases evolving during formation applied on LiNi0.6Mn0.2Co0.2O2 parallel to natural graphite lithium ion battery cells using gas chromatography-barrier discharge ionization detector[J]. Journal of Chromatography A, 2020, doi: 10.1016/j.chroma.2020.461122.
doi: 10.1016/j.chroma.2020.461122 |
80 | DIXIT M B, ZAMAN W, HORTANCE N, et al. Nanoscale mapping of extrinsic interfaces in hybrid solid electrolytes[J]. Joule, 2020, 4(1): 207-2021. |
81 | OTOYAMA M, ITO Y, SAKUDA A, et al. Reaction uniformity visualized by Raman imaging in the composite electrode layers of all-solid-state lithium batteries[J]. Physical Chemistry Chemical Physics, 2020, 22(23): 13271-13276. |
82 | BASAK S, MIGUNOV V, TAVABI A H, et al. Operando transmission electron microscopy study of all-solid-state battery interface: Redistribution of lithium among interconnected particles[J]. ACS Applied Energy Materials, 2020, 3(6): 5101-5106. |
83 | MCSHANE E J, COLCLASURE A M, BROWN D E, et al. Quantification of inactive lithium and solid-electrolyte interphase species on graphite electrodes after fast charging[J]. ACS Energy Letters, 2020, 5(6): 2045-2051. |
84 | CHIKU M, OTA K, HIGUCHI E, et al. Microband-array electrode technique for the detection of reaction distributions in the depth direction of composite electrodes for the all-solid-state lithium-ion batteries[J]. ACS OMEGA, 2020, 5(27): 16739-16743. |
85 | LI X, GUAN H, MA Z, et al. In/ex-situ Raman spectra combined with EIS for observing interface reactions between Ni-rich layered oxide cathode and sulfide electrolyte[J]. Journal of Energy Chemistry, 2020, 48: 195-202. |
86 | FATHIANNASAB H, GHORBANI KASHKOOLI A, LI T, et al. Three-dimensional modeling of all-solid-state lithium-ion batteries using synchrotron transmission X-ray microscopy tomography[J]. Journal of the Electrochemical Society, 2020, 167(10): doi: 10.1149/1945-7111/ab9380. |
87 | NOMURA Y, YAMAMOTO K, HIRAYAMA T, et al. Visualization of lithium transfer resistance in secondary particle cathodes of bulk-type solid-state batteries[J]. ACS Energy Letters, 2020, 5(6): 2098-2105. |
88 | OSWALD S, PRITZL D, WETJEN M, et al. Novel method for monitoring the electrochemical capacitance by in situ impedance spectroscopy as indicator for particle cracking of nickel-rich NCMs: Part I. theory and validation[J]. Journal of the Electrochemical Society, 2020, 167(10): doi: 10.1149/1945-7111/ab9187. |
89 | TONIN G, VAUGHAN G B M, BOUCHET R, et al. Operando investigation of the lithium/sulfur battery system by coupled X-ray absorption tomography and X-ray diffraction computed tomography[J]. Journal of Power Sources, 2020, 468: doi: 10.1016/j.jpowsour.2020.228287. |
90 | HAYAKAWA S, KANEDA A, MORI T, et al. Ti K-edge XAFS investigation of lithium migration in lithium titanium oxide anode material under charge and discharge cycle[J]. Radiation Physics and Chemistry, 2020, 175: doi: 10.1016/j.radphyschem.2018.12.030. |
91 | KIM Y. Minimum Co content limit in layer-structured cathode materials for Li-ion batteries[J]. Journal of Power Sources, 2020,467. |
92 |
KRAUSKOPF T, MOGWITZ B, HARTMANN H, et al. The fast charge transfer kinetics of the lithium metal anode on the garnet-type solid electrolyte Li6.25Al0.25La3Zr2O12[J]. Advanced Energy Materials, 2020, doi: 10.1002/aenm.202000945.
doi: 10.1002/aenm.202000945 |
93 | KAMPHAUS E P, GOMEZ S A, QIN X, et al. Effects of solid electrolyte interphase components on the reduction of LiFSI over lithium metal[J]. Chemphyschem, 2020, 21(12): 1310-1317. |
94 | MAI W, COLCLASURE A M, SMITH K. Model-instructed design of novel charging protocols for the extreme fast charging of lithium-ion batteries without lithium plating[J]. Journal of the Electrochemical Society, 2020, 167(8): doi: 10.1149/1945-7111/ab8c84. |
95 | MISTRY A, USSEGLIO-VIRETTA F L E, COLCLASURE A, et al. Fingerprinting redox heterogeneity in electrodes during extreme fast charging[J]. Journal of the Electrochemical Society, 2020, 167(9): doi: 10.1149/1945-7111/ab8fd7. |
96 | DATTA M K, GATTU B, KURUBA R, et al. Constitutional under-potential plating (CUP)—New insights for predicting the morphological stability of deposited lithium anodes in lithium metal batteries[J]. Journal of Power Sources, 2020, 467: doi: 10.1016/j.jpowsour.2020.228243. |
97 | HAN B, FENG D, LI S, et al. Self-regulated phenomenon of inorganic artificial solid electrolyte interphase for lithium metal batteries[J]. Nano Letters, 2020, 20(5): 4029-4037. |
98 |
ZHONG Y, XIE Y, HWANG S, et al. A highly efficient all-solid-state lithium/electrolyte interface induced by an energetic reaction[J]. Angewandte Chemie-International Edition, 2020, doi: 10.1002/anie.202004477.
doi: 10.1002/anie.202004477 |
99 | LEE D C, LEE K J, KIM C W. Optimization of a lithium-ion battery for maximization of energy density with design of experiments and micro-genetic algorithm[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2020, 7(4): 829-836. |
100 | FITZHUGH W, WU F, YE L, et al. Strain-stabilized ceramic-sulfide electrolytes[J]. Small, 2019, 15(33): doi: 10.1002/smll.201901470. |
[1] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[2] | Yingwei PEI, Hong ZHANG, Xinghui WANG. Recent advances in the electrolytes of rechargeable zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2075-2082. |
[3] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[4] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[5] | ZHANG Yan, WANG Hai, LIU Zhaomeng, ZHANG Deliu, WANG Jiadong, LI Jianzhong, GAO Xuanwen, LUO Wenbin. Research progress of nickel-rich ternary cathode material ncm for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1693-1705. |
[6] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[7] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
[8] | LI Yitao, SHEN Kaier, PANG Quanquan. Advance in organics enhanced sulfide-based solid-state batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1902-1918. |
[9] | ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. |
[10] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[11] | Maolin FANG, Ying ZHANG, Lin QIAO, Shumin LIU, Zhongqi CAO, Huamin ZHANG, Xiangkun MA. Research progress of iron-chromium flow batteries technology [J]. Energy Storage Science and Technology, 2022, 11(5): 1358-1367. |
[12] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
[13] | Honghui WANG, Zeqin WU, Deren CHU. Thermal behavior of lithium titanate based Li ion batteries under slight over-discharging condition [J]. Energy Storage Science and Technology, 2022, 11(5): 1305-1313. |
[14] | Zhicheng CHEN, Zongxu LI, Ling CAI, Yisi LIU. Development status and future prospects of flexible metal-air batteries [J]. Energy Storage Science and Technology, 2022, 11(5): 1401-1410. |
[15] | Xinyi WANG, Weijie LI, Chao HAN, Huakun LIU, Shixue DOU. Challenges and optimization strategies of the anode of aqueous zinc-ion battery [J]. Energy Storage Science and Technology, 2022, 11(4): 1211-1225. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||