Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (3): 889-898.doi: 10.19799/j.cnki.2095-4239.2022.0616
• Energy Storage System and Engineering • Previous Articles Next Articles
Xiangwei GUO(), Qi WU, Chen WANG, Xiaozhuo XU(), Liangjun Zhao
Received:
2022-10-21
Revised:
2022-11-14
Online:
2023-03-05
Published:
2023-04-14
Contact:
Xiaozhuo XU
E-mail:gxw@hpu.edu.cn;xxz@hpu.edu.cn
CLC Number:
Xiangwei GUO, Qi WU, Chen WANG, Xiaozhuo XU, Liangjun Zhao. Research on multi-threshold adaptive clustering group equalization control of energy storage battery pack[J]. Energy Storage Science and Technology, 2023, 12(3): 889-898.
Table 5
Equalization efficiency comparison"
控制方法 | 单体电量分布情况 | 均衡后各单体(B1~B12)SOC/% | 均衡效率/% | 标准差 |
---|---|---|---|---|
“单对单” 均衡 | 单体电量中间高,两边低 | 56.10, 56.80, 57.50, 58.30, 58.72, 58.72, 58.72, 57.94, 57.14, 56.44, 55.73, 55.73 | 99.816 | 1.1135 |
单体电量两边高,中间低 | 58.72, 58.72, 57.95, 57.15, 56.45, 55.73, 55.73, 56.09, 56.79, 57.49, 58.29, 58.72 | 99.817 | 1.1136 | |
单体电量均匀分布 | 57.20, 58.74, 57.99, 55.74, 56.07, 57.47, 58.73, 58.73, 56.78, 58.28, 55.74, 56.50 | 99.836 | 1.1150 | |
聚类群组 控制 | 单体电量中间高,两边低 | 56.10, 56.80, 57.50, 58.30, 58.30, 58.90, 58.30, 57.98, 57.18, 56.50, 56.40, 55.90 | 99.860 | 0.9640 |
单体电量两边高,中间低 | 58.75, 58.15, 57.97, 57.17, 56.47, 56.25, 55.76, 56.35, 56.79, 57.49, 58.15, 58.75 | 99.852 | 0.9773 | |
单体电量均匀分布 | 57.20, 58.78, 57.99, 55.79, 56.39, 57.47, 58.19, 58.79, 56.78, 58.28, 55.79, 56.50 | 99.834 | 1.0395 |
1 | WANG S C, YANG S Y, YANG W, et al. A new kind of balancing circuit with multiple equalization modes for serially connected battery pack[J]. IEEE Transactions on Industrial Electronics, 2021, 68(3): 2142-2150. |
2 | GUO X W, GENG J H, LIU Z, et al. A flyback converter-based hybrid balancing method for series-connected battery pack in electric vehicles[J]. IEEE Transactions on Vehicular Technology, 2021, 70(7): 6626-6635. |
3 | 郭向伟, 刘震, 耿佳豪, 等. 基于LC储能的串联电池组主动均衡方法研究[J]. 仪器仪表学报, 2020, 41(9): 242-251. |
GUO X W, LIU Z, GENG J H, et al. Research on the active balancing method of series battery pack based on LC energy storage[J]. Chinese Journal of Scientific Instrument, 2020, 41(9): 242-251. | |
4 | YE M, SONG X, XIONG R, et al. A novel dynamic performance analysis and evaluation model of series-parallel connected battery pack for electric vehicles[J]. IEEE Access, 2019, 7: 14256-14265. |
5 | E J, ZHANG B, ZENG Y, et al. Effects analysis on active equalization control of lithium-ion batteries based on intelligent estimation of the state-of-charge[J]. Energy, 2022, 238: doi: 10.1016/j.energy.2021.121822. |
6 | 郑征, 王肖帅, 李斌, 等. 基于三绕组变压器的锂电池组自适应交错控制均衡方案[J]. 储能科学与技术, 2022, 11(4): 1131-1140. |
ZHENG Z, WANG X S, LI B, et al. Adaptive interleaved control equalization for lithium-ion battery packs based on three-winding transformers[J]. Energy Storage Science and Technology, 2022, 11(4): 1131-1140. | |
7 | HUA Y, ZHOU S D, CUI H G, et al. A comprehensive review on inconsistency and equalization technology of lithium-ion battery for electric vehicles[J]. International Journal of Energy Research, 2020, 44(14): 11059-11087. |
8 | BISTRITZ I, BAMBOS N. Consensus-based stochastic control for model-free cell balancing[J]. IEEE Transactions on Control of Network Systems, 2021, 8(3): 1139-1150. |
9 | WU T Z, QI Y B, LIAO L, et al. Research on equalization strategy of lithium-ion batteries based on fuzzy logic control[J]. Journal of Energy Storage, 2021, 40: doi: 10.1016/j.est.2021.102722. |
10 | HEIN T, ZIEGLER A, OESER D, et al. A capacity-based equalization method for aged lithium-ion batteries in electric vehicles[J]. Electric Power Systems Research, 2021, 191: doi: 10.1016/j.epsr.2020.106898 |
11 | WANG B, XUAN D J, ZHAO X B, et al. Dynamic battery equalization scheme of multi-cell lithium-ion battery pack based on PSO and VUFLC[J]. International Journal of Electrical Power & Energy Systems, 2022, 136: doi: 10.1016/j.ijepes.2021.107760. |
12 | ERDOĞAN B, SAVRUN M M, KÖROĞLU T, et al. An improved and fast balancing algorithm for electric heavy commercial vehicles[J]. Journal of Energy Storage, 2021, 38: doi: 10.1016/j.est.2021.102522. |
13 | DING X F, ZHANG D H. A novel active equalization topology for series-connected lithium-ion battery packs[C]//2018 IEEE Energy Conversion Congress and Exposition (ECCE). September 23-27, 2018, Portland, OR, USA. IEEE, 2018: 2753-2758. |
14 | LIU M, CHEN Y N, ELASSER Y, et al. Dual frequency hierarchical modular multilayer battery balancer architecture[J]. IEEE Transactions on Power Electronics, 2021, 36(3): 3099-3110. |
15 | 向兆军, 胡凤玲, 罗明华, 等. 基于电池组模型和聚类算法的锂离子电池组SOC不一致估计[J]. 机械工程学报, 2020, 56(18): 154-163. |
XIANG Z J, HU F L, LUO M H, et al. Estimation of SOC inconsistencies in lithium-ion battery packs based on battery pack modeling and clustering algorithm[J]. Journal of Mechanical Engineering, 2020, 56(18): 154-163. | |
16 | SUN J L, LIU W, TANG C Y, et al. A novel active equalization method for series-connected battery packs based on clustering analysis with genetic algorithm[J]. IEEE Transactions on Power Electronics, 2021, 36(7): 7853-7865. |
17 | 刘征宇, 魏自红, 许亚娟, 等. 基于自适应拓扑的电池动态分组均衡方法[J]. 中国机械工程, 2020, 31(6): 714-721. |
LIU Z Y, WEI Z H, XU Y J, et al. A battery dynamic grouping equalization method based on adaptive topology[J]. China Mechanical Engineering, 2020, 31(6): 714-721. | |
18 | 郭向伟, 刘震, 康龙云, 等. 一种单电感串并联电池组均衡方法[J]. 电机与控制学报, 2021, 25(12): 87-95. |
GUO X W, LIU Z, KANG L Y, et al. Series-parallel battery pack balancing method with single inductor[J]. Electric Machines and Control, 2021, 25(12): 87-95. | |
19 | XU X Z, XING C, WU Q, et al. An active SOC balancing method with LC energy storage for series battery Pack[J]. Frontiers in Energy Research. 2022, 10: doi: 10.3389/fenrg.2022.901811. |
[1] | Yiming YAO, Weiling LUAN, Ying CHEN, Min SUN. Recent progress in aging degradation of lithium-ion battery materials via in-situ optical microscopy [J]. Energy Storage Science and Technology, 2023, 12(3): 777-791. |
[2] | Ting TING, Qihang LIN, Changyang LIU, Liuzhen BIAN, Chao SUN, QI Ji, Jihua PENG, Shengli AN. Research progress in modification of manganese dioxide as cathode materials for aqueous zinc-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(3): 754-767. |
[3] | Xiuliang CHANG, Xichao LI, Longzhou JIA, Shouli WEI, Jinghao WANG, Zuoqiang DAI, Lili ZHENG. Heat generation characteristics of overcharged cyclic aging batteries [J]. Energy Storage Science and Technology, 2023, 12(3): 685-697. |
[4] | Ruijie WANG, Zhouli HUI, Ming YANG. Gaussian process regression based on indirect health indicators for SOH estimation of lithium battery [J]. Energy Storage Science and Technology, 2023, 12(2): 560-569. |
[5] | Yuhao ZHOU, Luoyun XÜ, Zhongping ZHANG, Lingchong LIU, Bin NAN, Haiqi ZHAO. Construction and simulation analysis of thermoelectric coupling model of lithium battery based on digital twin [J]. Energy Storage Science and Technology, 2023, 12(2): 536-543. |
[6] | Wenkai ZHU, Xing ZHOU, Yajie LIU, Tao ZHANG, Yuanming SONG. Real time state of charge estimation method of lithium-ion battery based on recursive gated recurrent unit neural network [J]. Energy Storage Science and Technology, 2023, 12(2): 570-578. |
[7] | Zhifu WANG, Wei LUO, Yuan YAN, Song XU, Wenmei HAO, Conglin ZHOU. Fault diagnosis of lithium-ion battery sensors using GAPSO-FNN [J]. Energy Storage Science and Technology, 2023, 12(2): 602-608. |
[8] | Yulong ZHANG, Weiling LUAN, Senming WU. Quantitative analysis of the lithium plating-stripping process of lithium-ion batteries using external characteristic methods [J]. Energy Storage Science and Technology, 2023, 12(2): 529-535. |
[9] | Jun SHENG, Yimin FU, Huigen YU. Structure simulation of large soft pack module for energy storage [J]. Energy Storage Science and Technology, 2023, 12(2): 579-584. |
[10] | Yang LIU, Weijun TENG, Qingfa GU, Xin SUN, Yuliang TAN, Zhijin FANG, Jianlin LI. Scaled-up diversified electrochemical energy storage LCOE and its economic analysis [J]. Energy Storage Science and Technology, 2023, 12(1): 312-318. |
[11] | Kai ZHANG, Youlong XU. Research progress and development trend of sodium manganate cathode materials for sodium ion batteries [J]. Energy Storage Science and Technology, 2023, 12(1): 86-110. |
[12] | Xiaolong HE, Xiaolong SHI, Ziyang WANG, Luhao HAN, Bin YAO. Experimental study on thermal runaway characteristics of vehicle NCM lithium-ion batteries under overcharge, overheating, and their combined effects [J]. Energy Storage Science and Technology, 2023, 12(1): 218-226. |
[13] | Qiantong LIU, Yuanxiu XING. Remaining life prediction of lithium-ion battery based on VMD-PSO-GRU model [J]. Energy Storage Science and Technology, 2023, 12(1): 236-246. |
[14] | Qingwen GAO, Zhihao YANG, Wenpeng LI, Wenjia WU, Jingtao WANG. Preparation and performance of Co2+-doped CeO2-based laminar composite solid-state electrolyte [J]. Energy Storage Science and Technology, 2022, 11(12): 3776-3786. |
[15] | Yang WANG, Yuxin ZHANG, Xu LU, Long LIU. Performance of an NCM811 battery based on a lithium-ion embedding model [J]. Energy Storage Science and Technology, 2022, 11(12): 3748-3758. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||