Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (10): 3720-3729.doi: 10.19799/j.cnki.2095-4239.2024.0340
• Technical Economic Analysis of Energy Storage • Previous Articles Next Articles
Junmei WANG1(), Xiaonan WU2(), Bairui LIAO3
Received:
2024-04-18
Revised:
2024-05-10
Online:
2024-10-28
Published:
2024-10-30
Contact:
Xiaonan WU
E-mail:15982064014@163.com;1936333037@qq.com
CLC Number:
Junmei WANG, Xiaonan WU, Bairui LIAO. Multi-season optimization of integrated energy systems considering environmental penalties[J]. Energy Storage Science and Technology, 2024, 13(10): 3720-3729.
1 | 黎静华, 朱梦姝, 陆悦江, 等. 综合能源系统优化调度综述[J]. 电网技术, 2021, 45(6): 2256-2272. DOI: 10.13335/j.1000-3673.pst.2021.0020. |
LI J H, ZHU M S, LU Y J, et al. Review on optimal scheduling of integrated energy systems[J]. Power System Technology, 2021, 45(6): 2256-2272. DOI: 10.13335/j.1000-3673.pst.2021.0020. | |
2 | MU C L, DING T, QU M, et al. Decentralized optimization operation for the multiple integrated energy systems with energy cascade utilization[J]. Applied Energy, 2020, 280: 115989. DOI: 10.1016/j.apenergy.2020.115989. |
3 | 李昊, 张静, 刘畅, 等. 基于"端-边-云" 架构的园区综合能源系统协调优化调度[J]. 储能科学与技术, 2022, 11(2): 623-634. DOI: 10.19799/j.cnki.2095-4239.2021.0445. |
LI H, ZHANG J, LIU C, et al. Coordinated and optimized dispatching of park integrated energy system based on "End Edge Cloud" architecture[J]. Energy Storage Science and Technology, 2022, 11(2): 623-634. DOI: 10.19799/j.cnki.2095-4239.2021.0445. | |
4 | DING Y X, XU Q S, XIA Y X, et al. Optimal dispatching strategy for user-side integrated energy system considering multiservice of energy storage[J]. International Journal of Electrical Power & Energy Systems, 2021, 129: 106810. DOI: 10.1016/j.ijepes.2021.106810. |
5 | SCHELLER F, BRUCKNER T. Energy system optimization at the municipal level: An analysis of modeling approaches and challenges[J]. Renewable and Sustainable Energy Reviews, 2019, 105: 444-461. DOI: 10.1016/j.rser.2019.02.005. |
6 | 许周, 孙永辉, 谢东亮, 等. 计及电/热柔性负荷的区域综合能源系统储能优化配置[J]. 电力系统自动化, 2020, 44(2): 53-59. DOI: 10.7500/AEPS20190620005. |
XU Z, SUN Y H, XIE D L, et al. Optimal configuration of energy storage for integrated region energy system considering power/thermal flexible load[J]. Automation of Electric Power Systems, 2020, 44(2): 53-59. DOI: 10.7500/AEPS20190620005. | |
7 | ZHUANG R, JIANG D F. Integrated evaluation and optimization on building area ratios of urban complex with distributed energy resource system in different climatic conditions[J]. Energy and Buildings, 2022, 261: 111949. DOI: 10.1016/j.enbuild.2022.111949. |
8 | SAMETI M, HAGHIGHAT F. Integration of distributed energy storage into net-zero energy district systems: Optimum design and operation[J]. Energy, 2018, 153: 575-591. DOI: 10.1016/j.energy.2018.04.064. |
9 | ZHU X Y, ZHAN X Y, LIANG H, et al. The optimal design and operation strategy of renewable energy-CCHP coupled system applied in five building objects[J]. Renewable Energy, 2020, 146: 2700-2715. DOI: 10.1016/j.renene.2019.07.011. |
10 | WU D, HAN Z H, LIU Z J, et al. Comparative study of optimization method and optimal operation strategy for multi-scenario integrated energy system[J]. Energy, 2021, 217: 119311. DOI: 10.1016/j.energy.2020.119311. |
11 | 刘蓉晖, 李子林, 杨秀, 等. 考虑用户侧柔性负荷的社区综合能源系统日前优化调度[J]. 太阳能学报, 2019, 40(10): 2842-2850. DOI: 10.19912/j.0254-0096.2019.10.018. |
LIU R H, LI Z L, YANG X, et al. Optimal dispatch of community integrated energy system considering user-side flexible load[J]. Acta Energiae Solaris Sinica, 2019, 40(10): 2842-2850. DOI: 10.19912/j.0254-0096.2019.10.018. | |
12 | 崔杨, 曾鹏, 王铮, 等. 计及电价型需求侧响应含碳捕集设备的电–气–热综合能源系统低碳经济调度[J]. 电网技术, 2021, 45(2): 447-461. DOI: 10.13335/j.1000-3673.pst.2020.0100a. |
CUI Y, ZENG P, WANG Z, et al. Low-carbon economic dispatch of electricity-gas-heat integrated energy system with carbon capture equipment considering price-based demand response[J]. Power System Technology, 2021, 45(2): 447-461. DOI: 10.13335/j.1000-3673.pst.2020.0100a. | |
13 | 金红光, 郑丹星, 徐建中. 分布式冷热电联产系统装置及应用[M]. 北京: 中国电力出版社, 2010: 36-42. |
JIN H G, ZHENG D X, XU J Z. Distributed cogeneration system device and its application[M]. Beijing: China Electric Power Press, 2010: 36-42. | |
14 | YANG D C, WANG M. Optimal operation of an integrated energy system by considering the multi energy coupling, AC-DC topology and demand responses[J]. International Journal of Electrical Power & Energy Systems, 2021, 129: 106826. DOI: 10.1016/j.ijepes.2021.106826. |
15 | 林世平. 燃气冷热电分布式能源技术应用手册[M]. 北京: 中国电力出版社, 2014.LIN S P. Distributed energy technology application manual for gas heating and cooling [M]. Beijing: China Electric Power Press, 2014. |
16 | GUO Z H, ZHANG R, WANG L, et al. Optimal operation of regional integrated energy system considering demand response[J]. Applied Thermal Engineering, 2021, 191: 116860. DOI: 10.1016/j.applthermaleng.2021.116860. |
17 | 王俊伟, 任艺, 郭尊, 等. 基于综合需求响应和奖惩阶梯型碳交易的综合能源系统优化调度[J]. 储能科学与技术, 2022, 11(7): 2177-2187. DOI: 10.19799/j.cnki.2095-4239.2021.0692. |
WANG J W, REN Y, GUO Z, et al. Optimal scheduling of integrated energy system considering integrated demand response and reward and punishment ladder carbon trading[J]. Energy Storage Science and Technology, 2022, 11(7): 2177-2187. DOI: 10.19799/j.cnki.2095-4239.2021.0692. | |
18 | 李政洁, 撖奥洋, 周生奇, 等. 计及综合需求响应的综合能源系统优化调度[J]. 电力系统保护与控制, 2021, 49(21): 36-42. DOI: 10.19783/j.cnki.pspc.210028. |
LI Z J, HAN A Y, ZHOU S Q, et al. Optimization of an integrated energy system considering integrated demand response[J]. Power System Protection and Control, 2021, 49(21): 36-42. DOI: 10.19783/j.cnki.pspc.210028. | |
19 | 张晶, 范辉, 张肖杰, 等. 考虑风险成本的跨区域综合能源系统调度优化模型[J]. 热力发电, 2021, 50(8): 121-130. DOI: 10.19666/j.rlfd.202104070. |
ZHANG J, FAN H, ZHANG X J, et al. Optimal model of cross-regional integrated energy system dispatching considering risk cost[J]. Thermal Power Generation, 2021, 50(8): 121-130. DOI: 10.19666/j.rlfd.202104070. |
[1] | Yuhang YUAN, Yuchen GAO, Jundong ZHANG, Yanbin GAO, Chaolong WANG, Xiang CHEN, Qiang ZHANG. The application of large language models in energy storage research [J]. Energy Storage Science and Technology, 2024, 13(9): 2907-2919. |
[2] | Dameng LIU, Xuepeng MOU, Bohao SHI, Julong CHEN, Bin WANG, Chen LUO, Chengjun ZHONG, Sizhe CHEN. Multi-software collaborative modeling method for mechanical and electrical co-simulation of slope gravity energy storage systems [J]. Energy Storage Science and Technology, 2024, 13(9): 3266-3276. |
[3] | Jiahui HUANG, Zhufang KUANG. The forefront of the integration of artificial intelligence and energy storage technologies [J]. Energy Storage Science and Technology, 2024, 13(9): 3161-3181. |
[4] | Jing XU, Yuqi WANG, Xiao FU, Qifan YANG, Jingchen LIAN, Liqi WANG, Ruijuan XIAO. Discovery of new battery materials based on a big data approach [J]. Energy Storage Science and Technology, 2024, 13(9): 2920-2932. |
[5] | Bin DENG, Haiming HUA, Yuzhi ZHANG, Xiaoxu WANG, Linfeng ZHANG. Deep potential model: Applications and insights for electrochemical energy storage materials [J]. Energy Storage Science and Technology, 2024, 13(9): 2884-2906. |
[6] | Zhanwei LI, Dongfang FAN, Chao ZENG, Wenqian HE, Jin HE. Research on capacity optimization configuration and operation strategy of energy storage system considering wind and solar consumption [J]. Energy Storage Science and Technology, 2024, 13(8): 2713-2725. |
[7] | Yuguang LI, Xiang LIU, Yanzhao LIANG, Shuangzhen LIU. Research on the application of flywheel energy storage device in rail transit [J]. Energy Storage Science and Technology, 2024, 13(8): 2679-2686. |
[8] | Qianqian ZHOU, Yong HUANG, Ke CUI, Danan SUN. Research and test verification on simulation technology of motor temperature field of flywheel energy storage device [J]. Energy Storage Science and Technology, 2024, 13(8): 2589-2596. |
[9] | Qun GE, Tao LIANG, Bin HOU, Wanhong WANG, Long ZHANG, Liangyu WU, Chengbin ZHANG, Xiangdong LIU. Performance enhancement of thermal energy storage units for plant factories [J]. Energy Storage Science and Technology, 2024, 13(8): 2687-2695. |
[10] | Ye CHEN, Jin LI, Houfu WU, Shaoyu ZHANG, Yuxi CHU, Ping ZHUO. Analysis of thermal runaway propagation and explosion risk of a large battery module for energy storage [J]. Energy Storage Science and Technology, 2024, 13(8): 2803-2812. |
[11] | Changfa LIU, Liheng FU, Zengli ZHANG, Hongsheng LI, Jingbin GU. Adaptive coordinated control method for distributed energy storage capacity with high proportion of photovoltaic access [J]. Energy Storage Science and Technology, 2024, 13(8): 2696-2703. |
[12] | Pengyu LI, Xipeng LIN, Liang WANG, Haisheng CHEN, Yifei WANG. Study on supercritical nitrogen flow and heat transfer characteristics in a vertical corrugated channel [J]. Energy Storage Science and Technology, 2024, 13(8): 2605-2614. |
[13] | Zheng LI, Julong CHEN, Wenlin LI, Yu ZHANG, Jierui YANG, Sizhe CHEN. Optimized operation of hybrid energy storage to enhance the performance of AGC with sloped gravity storage [J]. Energy Storage Science and Technology, 2024, 13(8): 2761-2771. |
[14] | Yongqi LI, Yun DU, Zhenhua FANG, Songtong ZHANG, Xiayu ZHU, Hailiang HU, Jingyi QIU, Hai MING. Review of the operation and fault handling analysis of new energy microgrid systems in military applications [J]. Energy Storage Science and Technology, 2024, 13(8): 2740-2757. |
[15] | Wentao ZHU, Yang ZHOU, Yimin XU, Tao SHI. Application and optimization of battery energy storage technology in new energy generation system [J]. Energy Storage Science and Technology, 2024, 13(8): 2737-2739. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||