Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (1): 175-182.doi: 10.19799/j.cnki.2095-4239.2024.0622
• Energy Storage System and Engineering • Previous Articles Next Articles
Bin LIU1(), Zongyao KANG1, Xin WANG1, Wei LIU2, Junbo ZHUANG1, Wenjun CHEN1, Xiaohui SHE1(
)
Received:
2024-07-08
Revised:
2024-08-07
Online:
2025-01-28
Published:
2025-02-25
Contact:
Xiaohui SHE
E-mail:liubin@stdu.edu.cn;shexh19@hotmail.com
CLC Number:
Bin LIU, Zongyao KANG, Xin WANG, Wei LIU, Junbo ZHUANG, Wenjun CHEN, Xiaohui SHE. Study of a segmented heating strategy to improve ammonia decomposition rate and energy utilization efficiency[J]. Energy Storage Science and Technology, 2025, 14(1): 175-182.
1 | YORK R, BELL S E. Energy transitions or additions?[J]. Energy Research & Social Science, 2019, 51: 40-43. |
2 | 万燕鸣, 熊亚林, 王雪颖. 全球主要国家氢能发展战略分析[J]. 储能科学与技术, 2022, 11(10): 3401-3410. DOI: 10.19799/j.cnki.2095-4239.2022.0132. |
WAN Y M, XIONG Y L, WANG X Y. Strategic analysis of hydrogen energy development in major countries[J]. Energy Storage Science and Technology, 2022, 11(10): 3401-3410. DOI: 10.19799/j.cnki.2095-4239.2022.0132. | |
3 | 刘玮, 万燕鸣, 熊亚林, 等. "双碳" 目标下我国低碳清洁氢能进展与展望[J]. 储能科学与技术, 2022, 11(2): 635-642. DOI: 10.19799/j.cnki.2095-4239.2021.0385. |
LIU W, WAN Y M, XIONG Y L, et al. Outlook of low carbon and clean hydrogen in China under the goal of "carbon peak and neutrality"[J]. Energy Storage Science and Technology, 2022, 11(2): 635-642. DOI: 10.19799/j.cnki.2095-4239.2021.0385. | |
4 | CHRISTENSEN C H, JOHANNESSEN T, SØRENSEN R Z, et al. Towards an ammonia-mediated hydrogen economy?[J]. Catalysis Today, 2006, 111(1/2): 140-144. DOI: 10.1016/j.cattod. 2005. 10.011. |
5 | ASIF M, SIDRA BIBI S, AHMED S, et al. Recent advances in green hydrogen production, storage and commercial-scale use via catalytic ammonia cracking[J]. Chemical Engineering Journal, 2023, 473: 145381. DOI: 10.1016/j.cej.2023.145381. |
6 | LI N, ZHANG C, LI D, et al. Review of reactor systems for hydrogen production via ammonia decomposition[J]. Chemical Engineering Journal, 2024, 495: 153125. DOI: 10.1016/j.cej. 2024.153125. |
7 | CHIUTA S, EVERSON R C, NEOMAGUS H W J P, et al. Reactor technology options for distributed hydrogen generation via ammonia decomposition: A review[J]. International Journal of Hydrogen Energy, 2013, 38(35): 14968-14991. DOI: 10.1016/j.ijhydene.2013.09.067. |
8 | DI CARLO A, VECCHIONE L, DEL PRETE Z. Ammonia decomposition over commercial Ru/Al 2 O 3 catalyst: An experimental evaluation at different operative pressures and temperatures[J]. International Journal of Hydrogen Energy, 2014, 39(2): 808-814. DOI: 10.1016/j.ijhydene.2013.10.110. |
9 | XIE T C, XIA S J, KONG R, et al. Performance analysis of ammonia decomposition endothermic membrane reactor heated by trough solar collector[J]. Energy Reports, 2022, 8: 526-538. DOI: 10.1016/j.egyr.2022.03.152. |
10 | YUAN P K, CHEN L W, LIU C Z, et al. Numerical studies on hydrogen production from ammonia thermal cracking with catalysts[J]. Energies, 2023, 16(13): 5196. DOI: 10.3390/en16135196. |
11 | XIA Q, LIN Z H, WANG C W, et al. Solar-driven multichannel membrane reactor for hydrogen production from ammonia decomposition[J]. Fuel, 2024, 356: 129591. DOI: 10.1016/j.fuel. 2023.129591. |
12 | XIA Q, LIN L R, LIN Z H, et al. Development of a Pd-Ag H 2 -selective membrane microchannel reactor for efficient solar hydrogen production with ammonia[J]. Energy Conversion and Management, 2022, 270: 116181. DOI: 10.1016/j.enconman. 2022.116181. |
13 | LUCENTINI I, GARCIA X, VENDRELL X, et al. Review of the decomposition of ammonia to generate hydrogen[J]. Industrial & Engineering Chemistry Research, 2021, 60(51): 18560-18611. DOI: 10.1021/acs.iecr.1c00843. |
14 | LEE J, GA S, LIM D, et al. Carbon-free green hydrogen production process with induction heating-based ammonia decomposition reactor[J]. Chemical Engineering Journal, 2023, 457: 141203. DOI: 10.1016/j.cej.2022.141203. |
15 | TRANGWACHIRACHAI K, ROUWENHORST K, LEFFERTS L, et al. Recent progress on ammonia cracking technologies for scalable hydrogen production[J]. Current Opinion in Green and Sustainable Chemistry, 2024, 49: 100945. DOI: 10.1016/j.cogsc.2024.100945. |
16 | CHELLAPPA A S, FISCHER C M, THOMSON W J. Ammonia decomposition kinetics over Ni-Pt/Al2O3 for PEM fuel cell applications[J]. Applied Catalysis A: General, 2002, 227(1/2): 231-240. DOI: 10.1016/S0926-860X(01)00941-3. |
17 | CHERIF A, ZAREI M, LEE J S, et al. Modeling and multi-objective optimization of electrified ammonia decomposition: Improvement of performance and thermal behavior[J]. Fuel, 2024, 358: 130243. DOI: 10.1016/j.fuel.2023.130243. |
18 | HUANG J L, XIA S J, CHEN L G. Optimal configurations of ammonia decomposition reactor with minimum power consumption and minimum heat transfer rate[J]. Energy, 2024, 293: 130636. DOI: 10.1016/j.energy.2024.130636. |
19 | 美STEPHEN R T 著. 姚强, 李水清, 王宇译. 燃烧学导论: 概念与应用[M]. 北京: 清华大学出版社, 2015. |
20 | LIN L, TIAN Y, SU W B, et al. Techno-economic analysis and comprehensive optimization of an on-site hydrogen refuelling station system using ammonia: Hybrid hydrogen purification with both high H 2 purity and high recovery[J]. Sustainable Energy & Fuels, 2020, 4(6): 3006-3017. DOI: 10.1039/C9SE01111K. |
21 | PRASAD V, KARIM A M, ARYA A, et al. Assessment of overall rate expressions and multiscale, microkinetic model uniqueness via experimental data injection: Ammonia decomposition on Ru/γ-Al 2 O 3 for hydrogen production[J]. Industrial & Engineering Chemistry Research, 2009, 48(11): 5255-5265. DOI: 10.1021/ie900144x. |
[1] | Yong LIU, Huaiwen YU, Dapeng LIU, Yong MU, Yingzhou WANG, Xiuyu ZHANG. Remaining useful life prediction of lithium-ion battery based on an ABC-LSTM model [J]. Energy Storage Science and Technology, 2025, 14(1): 331-345. |
[2] | Wei CAO, Fei CHEN, Xiangdong KONG, Zhicheng ZHU, Xuebing HAN, Languang LU, Yuejiu ZHENG. Progress of coating process for lithium-ion battery electrodes [J]. Energy Storage Science and Technology, 2025, 14(1): 90-103. |
[3] | Mengru WANG, Xirui SUN, Haoyu ZHANG, Jian CHEN, Youshi LI. Investigation on support modification on thermochemical energy storage characteristics of Ca/Cu composites [J]. Energy Storage Science and Technology, 2024, 13(12): 4290-4298. |
[4] | Hedan TANG, Han YE, Youjin ZHANG, Rui SHEN, Wenzhong LU, Jian CHEN, Youshi LI, Mingdi LI. Investigation on synthesis of Y2O3/ZrO2 co-stabilized Cu/Ca composites and their thermochemical energy storage properties [J]. Energy Storage Science and Technology, 2024, 13(12): 4310-4318. |
[5] | Jinqiao DU, Jie TIAN, Yan LI, Pu CAI, Wencong FENG, Wen LUO. Failure of graphite negative electrode in lithium-ion batteries and advanced characterization methods [J]. Energy Storage Science and Technology, 2024, 13(10): 3467-3479. |
[6] | Haixu CHEN, Li LI, Wenfu LIU, Yinling WANG, Weijun LI. Study on high-quality cluster development of the new energy storage industry in Henan Province [J]. Energy Storage Science and Technology, 2024, 13(10): 3706-3719. |
[7] | Chang LI, Weibo ZHENG, Shuai ZHU, Yunwen JIANG, Pingwen MING. Research on the dynamic process of a fuel cell air system based on a model [J]. Energy Storage Science and Technology, 2024, 13(8): 2580-2588. |
[8] | Ying BAI. Research on the energy supply role of fuel cells in logistics transportation systems [J]. Energy Storage Science and Technology, 2024, 13(7): 2459-2461. |
[9] | Siyan LIU, Genxiang ZHONG, Qing GE. Hydrogen fuel cell stack on-line intelligent monitoring system based on FDC [J]. Energy Storage Science and Technology, 2024, 13(6): 2030-2038. |
[10] | Yangyang XIONG, Aiqing YU, Yufei WANG, Hua XUE. Optimization of integrated energy system operation containing hydrogen-compressed natural gas based on multiple scenarios and uncertainties [J]. Energy Storage Science and Technology, 2024, 13(6): 1888-1899. |
[11] | Hongwei KAN, Xiaobin WU, Liang HE, Xinjian ZHANG, Guanfei XING. Influence of operating conditions on CV test of low temperature PEM water electrolysis single cells and mechanism analysis [J]. Energy Storage Science and Technology, 2024, 13(5): 1653-1657. |
[12] | Minjie BAO, Xiaoli YU, Rui HUANG, Junxuan CHEN, Xiaoyang CHEN, Wenbin ZHI. High-power fuel cell modeling and voltage uniformity analysis [J]. Energy Storage Science and Technology, 2024, 13(3): 952-962. |
[13] | Yiqiang WANG, Luqiang LIU, Zhicheng ZHANG, Ruonan HUI. Feasibility of "West-to-East Hydrogen Transmission" through chemical hydrogen storage media [J]. Energy Storage Science and Technology, 2024, 13(3): 1050-1058. |
[14] | Chenxi LIANG, Zhenbin WANG, Mingjin ZHANG, Cunhua MA, Ning LIANG. Research progress on magnesium-based solid hydrogen storage nanomaterials [J]. Energy Storage Science and Technology, 2024, 13(3): 788-824. |
[15] | Qiquan ZENG, Maji LUO, Yinlong YANG, Qingze HUANG. Life prediction of fuel cells based on the LSTM-UPF hybrid method [J]. Energy Storage Science and Technology, 2024, 13(3): 963-970. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||