Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (1): 152-161.doi: 10.19799/j.cnki.2095-4239.2024.0638
• Energy Storage System and Engineering • Previous Articles Next Articles
Yuefeng LI1,2(), Weida DING1,2, Yintao WEI1,2, Yong SUN1,2, Qing RAO1,2, Feng XIANG1,2, Yingcong YAO1
Received:
2024-07-09
Revised:
2024-07-30
Online:
2025-01-28
Published:
2025-02-25
Contact:
Yuefeng LI
E-mail:lyf0304@mail.ustc.edu.cn
CLC Number:
Yuefeng LI, Weida DING, Yintao WEI, Yong SUN, Qing RAO, Feng XIANG, Yingcong YAO. Research on the influence of key factors on the temperature characteristics of energy storage immersing lithium-ion battery pack[J]. Energy Storage Science and Technology, 2025, 14(1): 152-161.
Table 6
The values of heat conductivity coefficient of the three coolant under diiferent temperature"
温度/℃ | 氟化液/[W/(m·K)] | 硅油/[W/(m·K)] | 矿物质油/[W/(m·K)] |
---|---|---|---|
0 | 0.0798 | 0.136 | 0.138 |
5 | 0.0788 | 0.135 | 0.137 |
10 | 0.0778 | 0.135 | 0.137 |
15 | 0.0769 | 0.135 | 0.137 |
20 | 0.0759 | 0.134 | 0.136 |
25 | 0.0749 | 0.134 | 0.136 |
30 | 0.0739 | 0.134 | 0.136 |
35 | 0.0729 | 0.133 | 0.135 |
40 | 0.0720 | 0.133 | 0.135 |
1 | 曾少鸿, 吴伟雄, 刘吉臻, 等. 锂离子电池浸没式冷却技术研究综述[J]. 储能科学与技术, 2023, 12(9): 2888-2903. DOI: 10.19799/j.cnki.2095-4239.2023.0269. |
ZENG S H, WU W X, LIU J Z, et al. A review of research on immersion cooling technology for lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(9): 2888-2903. DOI: 10.19799/j.cnki.2095-4239.2023.0269. | |
2 | 姜威. 非稳态工况电池组浸没式流动沸腾热管理传热特性研究[D]. 徐州: 中国矿业大学, 2023. |
JIANG W. Heat transfer characteristics of unsteady state battery thermal management with immersion flow boiling[D]. Xuzhou: China University of Mining and Technology, 2023. | |
3 | 张进强, 王海民, 鲁南. 绝缘油浸没式冷却小型NCM811动力电池模组的温度场特性实验[J]. 储能科学与技术, 2022, 11(8): 2612-2619. DOI: 10.19799/j.cnki.2095-4239.2022.0261. |
ZHANG J Q, WANG H M, LU N. Temperature field characteristics of a small NCM811 traction battery module cooled by insulating oil immersion[J]. Energy Storage Science and Technology, 2022, 11(8): 2612-2619. DOI: 10.19799/j.cnki.2095-4239.2022.0261. | |
4 | 吴成会, 梁才航. 基于浸没式冷却的锂离子电池实验研究[J]. 电源技术, 2023, 47(11): 1409-1413. DOI: 10.3969/j.issn.1002-087X.2023.11.006. |
WU C H, LIANG C H. Experimental study of lithium-ion battery based on immersion cooling[J]. Chinese Journal of Power Sources, 2023, 47(11): 1409-1413. DOI: 10.3969/j.issn.1002-087X.2023.11.006. | |
5 | 汪阳卿, 方林. 锂离子动力电池模块散热特性研究[J]. 船电技术, 2019, 39(5): 59-62. DOI: 10.13632/j.meee.2019.05.017. |
WANG Y Q, FANG L. Research on heat dissipation characteristics of lithium lon battery module[J]. Marine Electric & Electronic Engineering, 2019, 39(5): 59-62. DOI: 10.13632/j.meee.2019.05.017. | |
6 | 刘周斌, 朱涛, 姜巍, 等. 储能锂离子电池包冷却系统的数值模拟与结构优化[J]. 中国电力, 2023, 56(10): 202-210. DOI: 10.11930/j.issn.1004-9649.202306114. |
LIU Z B, ZHU T, JIANG W, et al. Simulation analysis and structure optimization of cooling system for energy storage lithium-ion battery pack[J]. Electric Power, 2023, 56(10): 202-210. DOI: 10.11930/j.issn.1004-9649.202306114. | |
7 | 田钧, 高帅. 基于浸没式技术的纯电动汽车电池包热管理方案解析[J]. 汽车电器, 2023(5): 6-8. DOI: 10.13273/j.cnki.qcdq.2023.05.001. |
TIAN J, GAO S. Solution analysis of battery pack thermal management for pure electric vehicle based on immersion technology[J]. Auto Electric Parts, 2023(5): 6-8. DOI: 10.13273/j.cnki.qcdq.2023.05.001. | |
8 | 鲁南, 王海民, 王传伟, 等. 绝缘油浸没预热NCM811动力电池的热特性及放电参数改善[J]. 化工进展, 2023, 42(3): 1299-1307. DOI: 10.16085/j.issn.1000-6613.2022-0855. |
LU N, WANG H M, WANG C W, et al. Thermal characteristics and improved discharge parameters of NCM811 traction battery immersed preheated by insulating oil[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1299-1307. DOI: 10.16085/j.issn.1000-6613.2022-0855. | |
9 | 王宁, 王凌云, 刘世桐, 等. 基于CFD的单相浸没式液冷电池箱结构设计和仿真优化[J]. 中国高新科技, 2023(7): 24-26. DOI: 10.13535/j.cnki.10-1507/n.2023.07.02. |
WANG N, WANG L Y, LIU S T, et al. Structure design and simulation optimization of single-phase immersion liquid cooling battery box based on CFD[J]. China High-Tech, 2023(7): 24-26. DOI: 10.13535/j.cnki.10-1507/n.2023.07.02. | |
10 | 裴波, 汪阳卿, 杨栋梁, 等. 锂离子电池模块油冷散热特性数值研究[J]. 船电技术, 2021, 41(2): 11-14. DOI: 10.3969/j.issn.1003-4862.2021.02.003. |
PEI B, WANG Y Q, YANG D L, et al. Numerical study on heat dissipation characteristics of silicone oil-cooled lithium-ion battery module[J]. Marine Electric & Electronic Engineering, 2021, 41(2): 11-14. DOI: 10.3969/j.issn.1003-4862.2021.02.003. |
[1] | Wenshuo DAI, Qianyuan GUO, Xiangnan CHEN, Huamin ZHANG, Xiangkun MA. Research progress of bipolar plate materials for vanadium flow battery [J]. Energy Storage Science and Technology, 2024, 13(4): 1310-1325. |
[2] | Xintian XU, Bixiao ZHANG, Xinlong ZHU, Kaijie YANG. Refined thermal design optimization of energy storage battery system based on battery box openings [J]. Energy Storage Science and Technology, 2024, 13(2): 515-525. |
[3] | Yuefeng LI, Weipan XU, Yintao WEI, Weida DING, Yong SUN, Feng XIANG, You LYU, Jiaxiang WU, Yan XIA. Thermal design and simulation analysis of an immersing liquid cooling system for lithium-ions battery packs in energy storage applications [J]. Energy Storage Science and Technology, 2024, 13(10): 3534-3544. |
[4] | Ming LI, Jinyuan XIE, Muchu QIU, Liang SHAO, Qiang HUO. Research on balanced thermal management and energy saving of energy storage system based on planning curve [J]. Energy Storage Science and Technology, 2023, 12(8): 2585-2593. |
[5] | Yi WU, Yahong MENG, Yi ZHANG, Tie ZHOU, Ji LIU, Yewen WEI. Optimal equalization control of battery energy storage systems in power distribution station area [J]. Energy Storage Science and Technology, 2023, 12(5): 1655-1663. |
[6] | Keke LIU, Yongfeng LIU, Pucheng PEI, Shengzhuo YAO, Lu ZHANG. Design of a novel flow channel structure of PEMFC based on Koch snowflake [J]. Energy Storage Science and Technology, 2023, 12(11): 3361-3368. |
[7] | Yu CAO, Tong JIANG, Chi LIU, Yong YANG, Wenfei LIU, Wenying LIU. Electrochemical energy storage participation in primary frequency regulation control strategy considering frequency characteristics and energy storage battery state [J]. Energy Storage Science and Technology, 2023, 12(10): 3120-3130. |
[8] | Xiangjun LI, Yibiao GUAN, Juan HU, Xiaokang LAI. Review of energy storage application in China from 2012 to 2022 [J]. Energy Storage Science and Technology, 2022, 11(9): 2702-2712. |
[9] | Zhiying LU, Shan JIANG, Quanlong LI, Kexin MA, Teng FU, Zhigang ZHENG, Zhicheng LIU, Miao LI, Yongsheng LIANG, Zhifei DONG. Open-circuit voltage variation during charge and shelf phases of an all-vanadium liquid flow battery [J]. Energy Storage Science and Technology, 2022, 11(7): 2046-2050. |
[10] | Zhaoxia YANG, Jingyuan LOU, Xuejing LI, Hanwen WANG, Kezhong WANG, Dongjiang YOU. Status and development of the zinc-nickel single flow battery [J]. Energy Storage Science and Technology, 2020, 9(6): 1678-1690. |
[11] | Yitao ZOU, Houju PEI, Hong SHI, Xinlong ZHU, Kaijie YANG, Junyi WANG. Design and optimization of the cooling duct system for the battery pack of a certain container energy storage [J]. Energy Storage Science and Technology, 2020, 9(6): 1864-1871. |
[12] | JIN Ruijiu, ZHANG Xiangfeng, WANG Zhijie. Adaptive control strategy for energy storage battery output with inconsistent performance [J]. Energy Storage Science and Technology, 2019, 8(6): 1253-1259. |
[13] | TONG Huan, ZHANG Bei. Development course and future direction of chemical power sources [J]. Energy Storage Science and Technology, 2018, 7(S1): 8-16. |
[14] | WANG Hao1, YU Hailong1, JIN Yi2, WANG Suijun2, GUO Xiaojun3, XIAO Xiukun4, HUANG Xuejie1. A capacity fading model for a commercial Li4Ti5O12 battery [J]. Energy Storage Science and Technology, 2017, 6(3): 584-589. |
[15] | ZHAO Qianqian, ZHANG Shaohua. Estimation of zinc-bromine battery flow channel based on numerical simulation [J]. Energy Storage Science and Technology, 2016, 5(2): 228-234. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||