Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (12): 4349-4356.doi: 10.19799/j.cnki.2095-4239.2024.0759
• Special Issue on Thermochemical Energy Storage • Previous Articles Next Articles
Sha CHEN1(), Yuehao CHEN1, Xiaoqin SUN1(), Shuguang LIAO2
Received:
2024-08-13
Revised:
2024-09-02
Online:
2024-12-28
Published:
2024-12-23
Contact:
Xiaoqin SUN
E-mail:chensha0513@163.com;xiaoqinsun@csust.edu.cn
CLC Number:
Sha CHEN, Yuehao CHEN, Xiaoqin SUN, Shuguang LIAO. Preparation and properties of nano-carbon-based composite paraffin phase-change materials[J]. Energy Storage Science and Technology, 2024, 13(12): 4349-4356.
Table 2
Statistical table of latent heat and phase transition temperature of MWCNT-PCMs"
状态 | 参数 | MWCNT的质量分数 | ||||
---|---|---|---|---|---|---|
0% | 1% | 2% | 3% | 4% | ||
放热 凝固 | 潜热/(J/g) | 196.43 | 179.84 | 186.03 | 176.81 | 175.18 |
起点/℃ | 23.579 | 23.244 | 22.763 | 24.536 | 24.168 | |
峰值温度/℃ | 22.296 | 20.485 | 22.37 | 22.301 | 22.137 | |
吸热 熔化 | 潜热/(J/g) | 198.08 | 179.88 | 186.08 | 175.48 | 174.32 |
起点/℃ | 26.49 | 24.711 | 25.807 | 26.062 | 25.314 | |
峰值温度/℃ | 30.521 | 30.217 | 30.216 | 29.861 | 29.17 |
Table 3
Statistical table of latent heat and phase transition temperature of CNOs-PCMs"
状态 | 参数 | CNOs的质量分数 | ||||
---|---|---|---|---|---|---|
0% | 1% | 2% | 3% | 4% | ||
放热 凝固 | 潜热/(J/g) | 196.43 | 194.79 | 197.36 | 171.01 | 164.15 |
起点/℃ | 23.579 | 25.123 | 25.244 | 24.559 | 24.133 | |
峰值温度/℃ | 22.296 | 22.558 | 23.269 | 22.253 | 21.643 | |
吸热 熔化 | 潜热/(J/g) | 198.08 | 193.76 | 196.93 | 170.42 | 165.64 |
起点/℃ | 26.49 | 26.745 | 27.075 | 25.873 | 24.742 | |
峰值温度/℃ | 30.521 | 30.211 | 30.513 | 30.013 | 29.561 |
1 | 张群. 能源网络治理策略研究——我国参与全球能源治理的视角 [D]. 徐州: 中国矿业大学, 2018. |
ZHANG Q. Research on energy network governance strategies from perspective of China's participation in global energy governance[D]. Xuzhou: China University of Mining and Technology, 2018. | |
2 | GUERRAICHE D, BOUGRIOU C, GUERRAICHE K, et al. Experimental and numerical study of a solar collector using phase change material as heat storage[J]. Journal of Energy Storage, 2020, 27: 101133. DOI: 10.1016/j.est.2019.101133. |
3 | MA F, QIN Y. Research progress of phase change materials on heat transfer[J]. Applied Mechanics and Materials, 2013, 456: 456-460. DOI: 10.4028/www.scientific.net/amm.456.456. |
4 | LI Z R, HU N, FAN L W. Nanocomposite phase change materials for high-performance thermal energy storage: A critical review[J]. Energy Storage Materials, 2023, 55: 727-753. DOI: 10.1016/j.ensm.2022.12.037. |
5 | 罗意彬, 段文超, 严景好, 等. 双翅片矩形相变储能单元蓄热性能实验研究[J]. 储能科学与技术, 2024, 13(2): 405-415. DOI: 10.19799/j.cnki.2095-4239.2023.0627. |
LUO Y B, DUAN W C, YAN J H, et al. Experimental study on heat storage performance of a double-fin rectangular phase change energy storage unit[J]. Energy Storage Science and Technology, 2024, 13(2): 405-415. DOI: 10.19799/j.cnki.2095-4239.2023.0627. | |
6 | 严景好, 李杰, 李一鸣, 等. 基于梯度孔隙率金属泡沫的复合相变单元储热性能数值模拟[J]. 储能科学与技术, 2023, 12(8): 2424-2434. DOI: 10.19799/j.cnki.2095-4239.2023.0289. |
YAN J H, LI J, LI Y M, et al. Numerical simulation study on heat storage performance of composite phase-change units based on gradient-porosity metal foam[J]. Energy Storage Science and Technology, 2023, 12(8): 2424-2434. DOI: 10.19799/j.cnki.2095-4239.2023.0289. | |
7 | BABAEI H, KEBLINSKI P, KHODADADI J M. Molecular dynamics study of the interfacial thermal conductance at the graphene/paraffin interface in solid and liquid phases[C]//Volume 4: Heat and Mass Transfer Under Extreme Conditions; Environmental Heat Transfer; Computational Heat Transfer; Visualization of Heat Transfer; Heat Transfer Education and Future Directions in Heat Transfer; Nuclear Energy. July 14-19, 2013. Minneapolis, Minnesota, USA. American Society of Mechanical Engineers, 2013. DOI: 10.1115/ht2013-17478. |
8 | LI J, YANG H T, PENG Z A, et al. Experimental and numerical investigation on the cold harvest of composite phase change materials for building energy conservation[J]. Journal of Energy Storage, 2024, 78: 110108. DOI: 10.1016/j.est.2023.110108. |
9 | FAN L W, FANG X, WANG X, et al. Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials[J]. Applied Energy, 2013, 110: 163-172. DOI: 10.1016/j.apenergy.2013.04.043. |
10 | LIN Y X, JIA Y T, ALVA G, et al. Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 2730-2742. DOI: 10.1016/j.rser.2017.10.002. |
11 | POMERANTSEVA E, BONACCORSO F, FENG X L, et al. Energy storage: The future enabled by nanomaterials[J]. Science, 2019, 366(6468): eaan8285. DOI: 10.1126/science.aan8285. |
12 | GAO H L, ZHU Y B, MAO L B, et al. Super-elastic and fatigue resistant carbon material with lamellar multi-arch microstructure [J]. Nature Communications, 2016. DOI: 10.1038/ncomms12920. |
13 | AL-AHMED A, SARı A, ABU JAFAR MAZUMDER M, et al. Thermal energy storage and thermal conductivity properties of octadecanol-MWCNT composite PCMs as promising organic heat storage materials[J]. Scientific Reports, 2020, 10(1): 9168. DOI: 10.1038/s41598-020-64149-3. |
14 | CHEN X, CHENG P, TANG Z D, et al. Carbon-based composite phase change materials for thermal energy storage, transfer, and conversion[J]. Advanced Science, 2021, 8(9): 2001274. DOI: 10.1002/advs.202001274. |
15 | 卜路霞, 王春杰, 尹立辉, 等. 硝酸氧化对多壁碳纳米管的表面修饰及其分散性[J]. 电镀与精饰, 2018, 40(6): 10-13. DOI: 10.3969/j.issn.1001-3849.2018.06.003. |
BU L X, WANG C J, YIN L H, et al. Surface modification of multi-walled carbon nanotubes by nitric acid oxidation and their dispersion[J]. Plating and Finishing, 2018, 40(6): 10-13. DOI: 10.3969/j.issn.1001-3849.2018.06.003. | |
16 | 郑艳彬, 姜志刚, 朱品文. 洋葱碳的制备与应用研究进展[J]. 无机材料学报, 2015, 30(8): 793-801. DOI: 10.15541/jim20140646. |
ZHENG Y B, JIANG Z G, ZHU P W. Development on the preparation and application of onion-like carbon[J]. Journal of Inorganic Materials, 2015, 30(8): 793-801. DOI: 10.15541/jim20140646. | |
17 | VINDHYASARUMI A, ANJALI K P, SETHULEKSHMI A S, et al. A comprehensive review on recent progress in carbon nano-onion based polymer nanocomposites[J]. European Polymer Journal, 2023, 194: 112143. DOI: 10.1016/j.eurpolymj.2023.112143. |
18 | 陈轩. 含纳米颗粒相变复合储能材料的强化传热机理与工艺研究[D]. 哈尔滨: 哈尔滨工程大学, 2016. |
CHEN X. Study on heat transfer enhancement mechanism and technology of phase change composite energy storage materials containing nanoparticles[D]. Harbin: Harbin Engineering University, 2016. | |
19 | 肖弘毅,龚玮,杨震,等.纳米铜粉/石蜡复合相变储能材料的分散稳定性[C]//中国高等教育学会工程热物理专业委员会.高等学校工程热物理第十九届全国学术会议论文集.清华大学热能工程系, 2013: 9. |
20 | 吴学红, 王强伟, 王凯, 等. 纳米粒子强化有机复合相变材料的热物性及其应用研究进展[J]. 化工新型材料, 2021, 49(4): 40-45. |
WU X H, WANG Q W, WANG K, et al. Review on thermophysical property and application of organic composite phase change material enhanced by nano-particle[J]. New Chemical Materials, 2021, 49(4): 40-45. | |
21 | SHAO X F, LIN J C, TENG H R, et al. Hydroxyl group functionalized graphene oxide nanosheets as additive for improved erythritol latent heat storage performance: A comprehensive evaluation on the benefits and challenges[J]. Solar Energy Materials and Solar Cells, 2020, 215: 110658. DOI: 10.1016/j.solmat.2020.110658. |
22 | CHEN L J, ZOU R Q, XIA W, et al. Electro- and photodriven phase change composites based on wax-infiltrated carbon nanotube sponges[J]. ACS Nano, 2012, 6(12): 10884-10892. DOI: 10.1021/nn304310n. |
[1] | Chenyang ZHAO, Xiaokun YU, Yubing TAO. Preparation and characterization of modified CuO nanoparticles/n-octadecane phase change material [J]. Energy Storage Science and Technology, 2024, 13(6): 1786-1793. |
[2] | Lijie YANG. Research on the application of phase change energy storage materials in construction engineering [J]. Energy Storage Science and Technology, 2024, 13(5): 1471-1473. |
[3] | Xueli ZHANG, Weiqing SUN, Junhua ZHENG. Study on the influence of polyurethane-type solid-solid phase change energy storage materials on the temperature control effect of asphalt [J]. Energy Storage Science and Technology, 2024, 13(3): 841-843. |
[4] | Wen PEI. Preparation and thermal properties analysis of phase change energy storage materials in marine logistics [J]. Energy Storage Science and Technology, 2024, 13(3): 844-846. |
[5] | Hongpei NIU. Research on the application of phase change energy storage materials in energy saving building design [J]. Energy Storage Science and Technology, 2024, 13(3): 847-849. |
[6] | Jinya ZHANG, Wenbo ZHOU, Ziyiyi CHENG. Performance comparison of metal foam and fin phase-change energy storage system based on LBM [J]. Energy Storage Science and Technology, 2024, 13(2): 598-607. |
[7] | Yibin LUO, Wenchao DUAN, Jinghao YAN, Jie LI, Xiaoqin SUN, Shuguang LIAO. Experimental study on heat storage performance of a double-fin rectangular phase change energy storage unit [J]. Energy Storage Science and Technology, 2024, 13(2): 405-415. |
[8] | Jie ZHU. Analysis of thermal storage performance of electric vehicle thermal phase change energy storage system under the background of new energy and low carbon [J]. Energy Storage Science and Technology, 2024, 13(12): 4406-4408. |
[9] | Jianlong DAI, Guo LI, Yitong CAO, Zihan YANG, Zhiyuan XIA, Gongshuo ZHANG, Rui CHEN, Nan SHENG, Chunyu ZHU. Enhancing phase change heat storage performance of paraffin using porous metal foam [J]. Energy Storage Science and Technology, 2024, 13(11): 3764-3771. |
[10] | Xueling ZHANG, Qiang YE, Junheng GU, Haoyun XUN, Qi ZHANG, Chuanxiao CHENG, Tingxiang JIN, Yeqiang ZHANG. Preparation and adsorption heat storageperformance study of MgSO4-LiCl@MEG composite heat storage materials [J]. Energy Storage Science and Technology, 2023, 12(9): 2778-2788. |
[11] | Yu JIAN, Baoming CHEN, Pengzhen ZHU, Kun LI. Study on phase change heat transfer characteristics of paraffin square cavity with gradient pore density skeleton [J]. Energy Storage Science and Technology, 2023, 12(6): 1968-1980. |
[12] | Zian PENG, Wenchao DUAN, Jie LI, Xiaoqin SUN, Mengjie SONG. Energy storage characteristics of a shell-and-tube phase change energy storage heat exchanger for data centers [J]. Energy Storage Science and Technology, 2023, 12(6): 1765-1773. |
[13] | Xiaohui SHE, Xingyu WANG, Xiaolong GUO, Yixuan LIU, Jiayun WANG, Peng Han, Xiaofen REN, Xuemin ZHAO. A review on the preparation of ultra-low-temperature, high-temperature, and cross-temperature zone phase change materials and the regulation of physical properties [J]. Energy Storage Science and Technology, 2023, 12(12): 3818-3835. |
[14] | Yanqin GUO, Zhen ZENG, Hongguang ZHANG, Ziye LING, Zhengguo ZHANG, Xiaoming FANG. Investigation of heat transfer enhancement mechanism and performance of phase change materials using expanded graphite in double helical coils [J]. Energy Storage Science and Technology, 2023, 12(12): 3678-3689. |
[15] | Jie JU, Ruifang CHEN, Gang WEI. Application of new phase change energy storage materials in building engineering [J]. Energy Storage Science and Technology, 2023, 12(12): 3883-3885. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||