Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (12): 4357-4367.doi: 10.19799/j.cnki.2095-4239.2024.0806
• Special Issue on Thermochemical Energy Storage • Previous Articles Next Articles
Weijie CHAI1(), Xijia ZHAO2, Shihao CAO2(
)
Received:
2024-09-02
Revised:
2024-09-26
Online:
2024-12-28
Published:
2024-12-23
Contact:
Shihao CAO
E-mail:249823918@qq.com;shcao@haut.edu.cn
CLC Number:
Weijie CHAI, Xijia ZHAO, Shihao CAO. Experimental and numerical studies on the melting heat storage of metal honeycomb-enhanced phase-change materials[J]. Energy Storage Science and Technology, 2024, 13(12): 4357-4367.
Table 1
Thermophysical parameters"
材料 | 参数 | 数值 |
---|---|---|
正十八烷 | 固相密度 ρs/(kg/m3) | 865 |
液相密度 ρl/(kg/m3) | 776 | |
固相比热容 Cs/[J/(kg·K)] | 1934 | |
液相比热容 ρl/(kg/m3) | 2196 | |
固相导热系数 ks/[W/(m·K)] | 0.358 | |
液相导热系数 kl/[W/(m·K)] | 0.152 | |
动力黏度 µ/(Pa·s) | 0.0036 | |
熔化温度 Tm/K | 301.35 | |
相变区间 ΔT/K | 1 | |
相变潜热 L/(kJ/kg) | 243.5 | |
热膨胀系数 α/K-1 | 9.1×10-4 | |
AlSi10Mg铝合金 | 密度 ρ/(kg/m3) | 2675 |
比热容 C/[J/(kg·K)] | 903 | |
导热系数 k/[W/(m·K)] | 156.7 |
1 | 周文政, 章学来, 顾杰, 等. 相变储能材料的研究及应用进展[J]. 应用化工, 2024, 53(7): 1-5. |
ZHOU W Z, ZHANG X L, GU J, et al. Progress in research and application of phase change energy storage materials[J]. Applied Chemical Industry, 2024, 53(7): 1-5. | |
2 | 董菲菲, 卫宽宽. 绿色建筑能源的循环利用[J]. 储能科学与技术, 2024, 13(3): 949-951. DOI: 10.19799/j.cnki.2095-4239. 2024. 0133. |
DONG F F, WEI K K. Research on the recycling of green building energy[J]. Energy Storage Science and Technology, 2024, 13(3): 949-951. DOI: 10.19799/j.cnki.2095-4239.2024.0133. | |
3 | 胡茜芮, 张朝阳, 洪芳军. 高温相变胶囊梯级储热系统实验研究[J]. 储能科学与技术, 2023, 12(8): 2526-2535. DOI: 10.19799/j.cnki.2095-4239.2023.0122. |
HU X R, ZHANG C Y, HONG F J. Experimental study of high-temperature phase change capsule gradient heat storage system[J]. Energy Storage Science and Technology, 2023, 12(8): 2526-2535. DOI: 10.19799/j.cnki.2095-4239.2023.0122. | |
4 | 严景好, 李杰, 李一鸣, 等. 基于梯度孔隙率金属泡沫的复合相变单元储热性能数值模拟[J]. 储能科学与技术, 2023, 12(8): 2424-2434. DOI: 10.19799/j.cnki.2095-4239.2023.0289. |
YAN J H, LI J, LI Y M, et al. Numerical simulation study on heat storage performance of composite phase-change units based on gradient-porosity metal foam[J]. Energy Storage Science and Technology, 2023, 12(8): 2424-2434. DOI: 10.19799/j.cnki.2095-4239.2023.0289. | |
5 | MADRUGA S, CURBELO J. Dynamic of plumes and scaling during the melting of a phase change material heated from below[J]. International Journal of Heat and Mass Transfer, 2018, 126: 206-220. DOI: 10.1016/j.ijheatmasstransfer.2018.05.075. |
6 | 代建龙, 李果, 曹一通, 等. 多孔金属泡沫强化石蜡相变蓄热性能研究[J]. 储能科学与技术, 2024, 13(6) 1-9. |
DAI J L, LI G, CAO Y T, et al. Numerical simulation study on heat storage performance of composite phase change units based on gradient-porosity metal foam[J]. Energy Storage Science and Technology, 2024, 13(6): 1-9. | |
7 | MA C Y, ZHANG Y, CHEN X F, et al. Experimental study of an enhanced phase change material of paraffin/expanded graphite/nano-metal particles for a personal cooling system[J]. Materials, 2020, 13(4): 980. DOI: 10.3390/ma13040980. |
8 | DIANI A, NONINO C, ROSSETTO L. Melting of phase change materials inside periodic cellular structures fabricated by additive manufacturing: Experimental results and numerical simulations[J]. Applied Thermal Engineering, 2022, 215: 118969. DOI: 10.1016/j.applthermaleng.2022.118969. |
9 | DIANI A, MORO L, ROSSETTO L. Melting of paraffin waxes embedded in a porous matrix made by additive manufacturing[J]. Applied Sciences, 2021, 11(12): 5396. DOI: 10.3390/ app11125396. |
10 | BOSE P, AMIRTHAM V A. A review on thermal conductivity enhancement of paraffinwax as latent heat energy storage material[J]. Renewable and Sustainable Energy Reviews, 2016, 65: 81-100. DOI: 10.1016/j.rser.2016.06.071. |
11 | PRASHANTH S P, ARUNACHALA U C, VARUN K. Thermal performance augmentation of honeycomb metal matrix embedded phase change material in shell-tube latent heat storage unit[J]. Journal of Energy Storage, 2024, 91: 112045. DOI: 10.1016/j.est.2024.112045. |
12 | 倪鹏, 曹世豪. 金属蜂窝/石蜡复合相变材料融化储热性能研究[J]. 储能科学与技术, 2024, 13(2): 425-435. |
NI P, CAO S H. Melting heat storage properties of metal honeycomb/paraffin composite phase change materials[J]. Energy Storage Science and Technology, 2024, 13(2): 425-435. | |
13 | BIAN Z, HOU F, WANG H, et al. Experimental and numerical investigations of enhanced thermal energy storage performance for foam/paraffin composite under different heating conditions[J]. Journal of Energy Storage, 2022, 55: 105506. DOI: 10.1016/j.est.2022.105506. |
14 | BIAN Z, HOU F, CHEN J Q, et al. Numerical analysis on the effect of graded porosity in closed-cell metal foams/PCM composites[J]. Case Studies in Thermal Engineering, 2024, 55: 104145. DOI: 10.1016/j.csite.2024.104145. |
15 | LIU F, WANG J F, LIU Y Q, et al. Natural convection characteristics of honeycomb fin with different hole cells for battery phase-change material cooling systems[J]. Journal of Energy Storage, 2022, 51: 104578. DOI: 10.1016/j.est.2022.104578. |
16 | CIHAN E, BERENT H K, DEMIR H, et al. Entropy analysis and thermal energy storage performance of PCM in honeycomb structure: Effects of materials and dimensions[J]. Thermal Science and Engineering Progress, 2023, 38: 101668. DOI: 10.1016/j.tsep.2023.101668. |
17 | 陈俊旗, 曹世豪. 自然对流对方腔内相变石蜡熔化蓄热的影响[J]. 科学技术与工程, 2022, 22(24): 10586-10593. DOI: 10.3969/j.issn.1671-1815.2022.24.029. |
CHEN J Q, CAO S H. Effect of natural convection on melting heat storage of phase change paraffin in a square cavity[J]. Science Technology and Engineering, 2022, 22(24): 10586-10593. DOI: 10.3969/j.issn.1671-1815.2022.24.029. | |
18 | YANG B, BAI F W, WANG Y, et al. How mushy zone evolves and affects the thermal behaviours in latent heat storage and recovery: A numerical study[J]. International Journal of Energy Research, 2020, 44(6): 4279-4297. DOI: 10.1002/er.5191. |
[1] | Xiaofei ZHEN, Beibei WANG, Xiaohu ZHANG, Yiming SUN, Wenjiong CAO, Ti DONG. Study on the generation and diffusion law of thermal runaway gas in lithium battery energy storage system [J]. Energy Storage Science and Technology, 2024, 13(6): 1986-1994. |
[2] | Yunfeng ZHANG, Xuewen ZHANG, Wei ZHONG, Duwei JIANG, Zewei CHEN, Jie ZHANG. Numerical simulation of heat transfer performance of plate-fin radiator reinforced with double cascade phase change material of paraffin and low melting point alloy [J]. Energy Storage Science and Technology, 2024, 13(5): 1460-1470. |
[3] | Xinyu LIU, Anan ZHANG, Changjiang LIAO. Numerical simulation analysis of solid oxide fuel cells with different support structures [J]. Energy Storage Science and Technology, 2024, 13(5): 1710-1720. |
[4] | Kan ZHANG, Ting FU, Jiangbo WANG. Study on thermal equalization of spider web thermal structure based on topology optimization method [J]. Energy Storage Science and Technology, 2024, 13(5): 1721-1730. |
[5] | Dongxu HU, Shaofei ZHU, Xiaogang WEI, Yadong CUI, Baohong ZHU, Xingjian DAI, Wen LI, Haisheng CHEN. Research on mechanics and dynamics of MW-level large energy storage flywheel shafting [J]. Energy Storage Science and Technology, 2024, 13(5): 1542-1550. |
[6] | Heqing TIAN, Yiming GAO, Junjie ZHOU. Numerical simulation on the melting process of binary chloride salt nanofluids in a square cavity [J]. Energy Storage Science and Technology, 2024, 13(3): 1030-1035. |
[7] | Jian LIU, Libo YU, Zhenxing WU, Jiegang MOU. Effect of thermal characteristics of lithium-ion battery charging and discharging equipment on air cooling [J]. Energy Storage Science and Technology, 2024, 13(3): 914-923. |
[8] | Qi LIAO, Xiaolin CAO, Yibo DENG, Yaolin YANG, Ting CHEN. Heat dissipation simulation of tram supercapacitor module [J]. Energy Storage Science and Technology, 2024, 13(2): 702-711. |
[9] | Peng NI, Shihao CAO. Melting heat storage properties of metal honeycomb/paraffin composite phase change materials [J]. Energy Storage Science and Technology, 2024, 13(2): 425-435. |
[10] | Hongchen LI, Baoming CHEN, Pengzhen ZHU, Chonglong ZHONG, Chaofu MA. Study on phase-change heat transfer characteristics of anisotropic TPMS skeleton composite materials [J]. Energy Storage Science and Technology, 2024, 13(12): 4319-4329. |
[11] | Liming WANG, Mengqi WANG, Yimo LUO, Gesang YANG, Yuanyuan WANG, Lexiao WANG. Optimum design method for zeolite heat storage reactors [J]. Energy Storage Science and Technology, 2024, 13(12): 4272-4281. |
[12] | Zhenkun XIAO, Zhen CHEN, Zhuang YANG, Hongxun QI, Jun YAN. Thermodynamic analysis of an advanced high-temperature heat pump energy storage unit based on phase-change heat storage [J]. Energy Storage Science and Technology, 2024, 13(12): 4330-4338. |
[13] | Lexiao WANG, Yimo LUO, Liming WANG, Gesang YANG. Research on the performance of thermal storage reactor with salt hydrates under multifactor interactions [J]. Energy Storage Science and Technology, 2024, 13(12): 4396-4405. |
[14] | Long LI, Xiqing YANG, Ling TAO. Simulation analysis of heat storage behavior of phase change thermal storage system based on modified sensible heat capacity method [J]. Energy Storage Science and Technology, 2024, 13(11): 3939-3948. |
[15] | Huaning WANG, Xinjie XUE, Mianheng ZHANG, Jiahao WANG, Bin YANG, Changying ZHAO. Experimental and numerical investigation of a packed bed latent heat storage system for Carnot batteries [J]. Energy Storage Science and Technology, 2024, 13(11): 3906-3920. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||