Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (5): 1954-1968.doi: 10.19799/j.cnki.2095-4239.2024.1238
• Energy Storage System and Engineering • Previous Articles Next Articles
Haojie MAO1,2(), Xuehui ZHANG2,3(
), Hanhui JIAO2,3, Heping LI1(
), Yan LIU1, Haisheng CHEN2,3
Received:
2024-12-26
Revised:
2025-01-25
Online:
2025-05-28
Published:
2025-05-21
Contact:
Xuehui ZHANG, Heping LI
E-mail:maohaojie@hdu.edu.cn;zhangxuehui@iet.cn;peacelee@hdu.edu.cn
CLC Number:
Haojie MAO, Xuehui ZHANG, Hanhui JIAO, Heping LI, Yan LIU, Haisheng CHEN. Study on dynamic balancing method of double cantilever rotor in compressed air energy storage system[J]. Energy Storage Science and Technology, 2025, 14(5): 1954-1968.
Table 4
Calculation of counterweights under test weights 1 and 2"
实验号 | 试重 | 转子转速 | 传感器7计算配重 | 传感器8计算配重 | 实际加重 |
---|---|---|---|---|---|
实验1 | 0.72 g/-90° | 6000 r/min | 4.21 g/230.83° | 4.58 g/222.08° | 4.7 g/234.35° |
8000 r/min | 4.34 g/235.03° | 4.47 g/231.79° | |||
10000 r/min | 4.62 g/236.64° | 5.16 g/244.54° | |||
实验2 | 0.91 g/-90° | 6000 r/min | 4.51 g/234.94° | 4.47 g/221.6° | 4.56 g/230.45° |
8000 r/min | 4.02 g/232.98° | 3.97 g/222.1° | |||
10000 r/min | 5.48 g/236.38° | 4.44 g/226.2° |
Table 5
Calculation of counterweights under test weights 3 and 4"
实验号 | 试重 | 转子转速 | 传感器7计算配重 | 传感器8计算配重 | 实际加重 |
---|---|---|---|---|---|
实验3 | 0.72 g/-60° | 6000 r/min | 2.89 g/228.74° | 3.23 g/224.49° | 2.84 g/229.75° |
8000 r/min | 2.48 g/232.47° | 2.61 g/225.63° | |||
10000 r/min | 3.09 g/235.17° | 2.70 g/231.95° | |||
实验4 | 0.72 g/-120° | 6000 r/min | 7.66 g/232.9° | 6.94 g/216.08° | 6.23 g/235.96° |
8000 r/min | 6.6 g/234.5° | 6.44 g/218.31° | |||
10000 r/min | 4.81 g/265.67° | 4.92 g/248.33° |
1 | 陈海生, 李泓, 马文涛, 等. 2021年中国储能技术研究进展[J]. 储能科学与技术, 2022, 11(3): 1052-1076. DOI: 10.19799/j.cnki.2095-4239.2022.0105. |
CHEN H S, LI H, MA W T, et al. Research progress of energy storage technology in China in 2021[J]. Energy Storage Science and Technology, 2022, 11(3): 1052-1076. DOI: 10.19799/j.cnki. 2095-4239.2022.0105. | |
2 | 赵阳, 王志恒, 席光. 离心压缩机喘振动态特性的数值研究[J]. 工程热物理学报, 2019, 40(10): 2252-2258. |
ZHAO Y, WANG Z H, XI G. Numerical investigation of dynamic characteristic of surge in a centrifugal compressor[J]. Journal of Engineering Thermophysics, 2019, 40(10): 2252-2258. | |
3 | 胡东旭, 朱少飞, 魏晓钢, 等. MW级大储能量飞轮轴系结构力学及动力学研究[J]. 储能科学与技术, 2024, 13(5): 1542-1550. DOI: 10.19799/j.cnki.2095-4239.2023.0925. |
HU D X, ZHU S F, WEI X G, et al. Research on mechanics and dynamics of MW-level large energy storage flywheel shafting[J]. Energy Storage Science and Technology, 2024, 13(5): 1542-1550. DOI: 10.19799/j.cnki.2095-4239.2023.0925. | |
4 | 纪律, 陈海生, 张新敬, 等. 压缩空气储能技术研发现状及应用前景[J]. 高科技与产业化, 2018, 24(4): 52-58. |
JI L, CHEN H S, ZHANG X J, et al. Research and development status and application prospect of compressed air energy storage technology[J]. High-Technology & Industrialization, 2018, 24(4): 52-58. | |
5 | 王展, 涂伟, 朱峰龙. 基于影响系数法的主轴在线动平衡实验研究[J]. 机床与液压, 2018, 46(13): 28-32. DOI: 10.3969/j.issn.1001-3881.2018.13.008. |
WANG Z, TU W, ZHU F L. High speed machine spindle on-line dynamic balancing experimental study based on influence coefficient method[J]. Machine Tool & Hydraulics, 2018, 46(13): 28-32. DOI: 10.3969/j.issn.1001-3881.2018.13.008. | |
6 | 解梦涛, 张强波, 张霞妹. 基于全相位FFT不平衡分析的转子现场动平衡[J]. 振动 测试与诊断, 2021, 41(3): 566-570, 625-626. DOI: 10.16450/j.cnki.issn.1004-6801.2021.03.021. |
XIE M T, ZHANG Q B, ZHANG X M. Field dynamic balance of rotor based on all-phase FFT unbalance analysis[J]. Journal of Vibration, Measurement & Diagnosis, 2021, 41(3): 566-570, 625-626. DOI: 10.16450/j.cnki.issn.1004-6801.2021.03.021. | |
7 | ZHANG S H, WANG Y S, ZHANG Z M. Online dynamic balance technology for high speed spindle based on gain parameter adaption and scheduling control[J]. Applied Sciences, 2018, 8(6): 917. DOI: 10.3390/app8060917. |
8 | ALVES D S, MACHADO T H, CAVALCA K L, et al. Characteristics of oil film nonlinearity in bearings and its effects in rotor balancing[J]. Journal of Sound and Vibration, 2019, 459: 114854. DOI: 10.1016/j.jsv.2019.114854. |
9 | 朱峰龙. 基于LabVIEW的高速主轴在线动平衡振动信号处理与调控分析[D]. 沈阳: 沈阳建筑大学, 2018. |
ZHU F L. Vibration signal processing and control analysis of high-speed spindle online dynamic balance based on LabVIEW[D]. Shenyang: Shenyang Jianzhu University, 2018. | |
10 | ZHOU J, WU H C, WANG W Y, et al. Online unbalance compensation of a maglev rotor with two active magnetic bearings based on the LMS algorithm and the influence coefficient method[J]. Mechanical Systems and Signal Processing, 2022, 166: 108460. DOI: 10.1016/j.ymssp.2021. 108460. |
11 | 陈曦, 廖明夫, 张霞妹, 等. 大涵道比涡扇发动机低压转子现场动平衡技术[J]. 航空动力学报, 2017, 32(4): 808-819. DOI: 10.13224/j.cnki.jasp.2017.04.005. |
CHEN X, LIAO M F, ZHANG X M, et al. Field balancing technology for low pressure rotors of high bypass ratio turbofan engines[J]. Journal of Aerospace Power, 2017, 32(4): 808-819. DOI: 10.13224/j.cnki.jasp.2017.04.005. | |
12 | 黄威, 邓智泉, 李克翔, 等. 一种磁悬浮轴承支承刚性转子现场动平衡方法[J]. 电工技术学报, 2020, 35(22): 4636-4646. DOI: 10. 19595/j.cnki.1000-6753.tces.191289. |
HUANG W, DENG Z Q, LI K X, et al. A filed dynamic balancing method for rigid rotor supported by magnetic bearings[J]. Transactions of China Electrotechnical Society, 2020, 35(22): 4636-4646. DOI: 10.19595/j.cnki.1000-6753.tces.191289. | |
13 | 康敬欣, 石瑞玉, 潘鑫. 基于加权遗传算法的旋转机械不平衡振动溯源定位方法研究[J]. 振动与冲击, 2022, 41(24): 256-261, 292. DOI: 10.13465/j.cnki.jvs.2022.24.032. |
KANG J X, SHI R Y, PAN X. Research on unbalance vibration traceability and positioning method ofrotating machinery based on the weighted genetic algorithm[J]. Journal of Vibration and Shock, 2022, 41(24): 256-261, 292. DOI: 10.13465/j.cnki.jvs. 2022.24.032. | |
14 | 黄迪. 基于影响系数法的汽车传动轴现场动平衡[D]. 重庆: 重庆大学, 2018. |
HUANG D. Field dynamic balance of automobile transmission shaft based on influence coefficient method[D]. Chongqing: Chongqing University, 2018. | |
15 | 徐洪淼. 离心压缩机振动故障分析与处理[D]. 沈阳: 沈阳工业大学, 2009. |
XU H M. Analysis and treatment of vibration fault of centrifugal compressor[D]. Shenyang: Shenyang University of Technology, 2009. | |
16 | 王四季, 廖明夫. 转子现场动平衡技术研究[J]. 机械科学与技术, 2005, 24(12): 1510-1514. DOI: 10.3321/j.issn: 1003-8728.2005. 12.034. |
WANG S J, LIAO M F. Study of techniques for rotor balance in situ[J]. Mechanical Science and Technology, 2005, 24(12): 1510-1514. DOI: 10.3321/j.issn: 1003-8728.2005.12.034. | |
17 | XIANG B, WEN T, LIU Z Y. Vibration analysis, measurement and balancing of flywheel rotor suspended by active magnetic bearing[J]. Measurement, 2022, 197: 111305. DOI: 10.1016/j.measurement. 2022. 111305. |
18 | 黄兆飞, 王凯, 邱士安, 等. 双级动叶可调轴流风机小试重现场动平衡异常机理研究[J]. 机械设计与制造, 2019(6): 73-76. DOI: 10. 19356/j.cnki.1001-3997.2019.06.018. |
HUANG Z F, WANG K, QIU S A, et al. Research on the mechanism of the field dynamic balance of the two-stage adjustable blade axial flow fan with little mass of trial weight[J]. Machinery Design & Manufacture, 2019(6): 73-76. DOI: 10. 19356/j.cnki.1001-3997.2019.06.018. | |
19 | 陈龙. 超精密车床主轴高精度现场动平衡技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2015. |
CHEN L. Research on high-precision field dynamic balancing technology of ultra-precision lathe spindle[D]. Harbin: Harbin Institute of Technology, 2015. | |
20 | GOODMAN T P. A least-squares method for computing balance corrections[J]. Journal of Engineering for Industry, 1964, 86(3): 273-277. DOI: 10.1115/1.3670532. |
21 | 钟一谔. 转子动力学[M]. 北京: 清华大学出版社, 1987. |
ZHONG Y E. Rotor dynamics[M]. Beijing: Tsinghua University Press, 1987. |
[1] | Ll Wenjie. Computer network control technology of compressed air energy storage system [J]. Energy Storage Science and Technology, 2025, 14(4): 1533-1535. |
[2] | Yi YANG, Shi LIU, Zheng HUANG, Xianbiao BU, Wei WU, Zheran WEN, Juntao XU, Shijie LI. Performance analysis of an offshore electricity, freshwater, ice, and heating-cooling polygeneration system based on underwater compressed air energy storage [J]. Energy Storage Science and Technology, 2025, 14(3): 1160-1167. |
[3] | Bin XU, Yangli ZHU, Xing WANG, Jun XIONG, Xianchao PAN, Yujie XU, Haisheng CHEN. Research on circumferential nonuniform distribution of axial turbine guide vanes with radial chamber [J]. Energy Storage Science and Technology, 2025, 14(1): 203-218. |
[4] | Pengyu LI, Xipeng LIN, Liang WANG, Haisheng CHEN, Yifei WANG. Study on supercritical nitrogen flow and heat transfer characteristics in a vertical corrugated channel [J]. Energy Storage Science and Technology, 2024, 13(8): 2605-2614. |
[5] | Wenxin HAN, Xuehui ZHANG, Jian XU, Xin JIANG, Lihong FU, Wenbin GUO, Haisheng CHEN. Research progress on flow and control of compressor tip clearance [J]. Energy Storage Science and Technology, 2024, 13(6): 1940-1962. |
[6] | Zuogang GUO, Tong LIU, Min XU, Shen XU, Guangming CHEN, Xinyue HAO. Theoretical analysis of a novel ejector augmented compressed air energy storage system [J]. Energy Storage Science and Technology, 2024, 13(6): 1877-1887. |
[7] | Yang LI. Mathematical model of thermodynamic improvement of compressed air storage gas storage [J]. Energy Storage Science and Technology, 2024, 13(5): 1707-1709. |
[8] | Liugan ZHANG, Yingchi ZHOU, Wenbing SUN, Kai YE, Longxiang CHEN. Performance of precooled CAES system using ORC-VCR to recover compression heat [J]. Energy Storage Science and Technology, 2024, 13(2): 611-622. |
[9] | Hongpeng HE, Xiaoyu WANG, Meijiao XU, Chenglong MA, Wei ZHANG, Li ZHANG. Reliability and economic evaluation of compressed air energy storage in wind power generation systems with transmission constraints [J]. Energy Storage Science and Technology, 2024, 13(11): 4226-4234. |
[10] | Xiangcheng MENG. Optimization of civil engineering building structure design for large scale compressed air energy storage systems [J]. Energy Storage Science and Technology, 2024, 13(10): 3579-3581. |
[11] | Wenhui LI, Yonghan JIAO, Ge GUO, Jiajun LI, Jianqiang DENG. Research on improving cooling performance of compressed air energy storage system [J]. Energy Storage Science and Technology, 2023, 12(9): 2833-2841. |
[12] | Xiaoxia SUN, Zhonghua GUI, Ziyu GAO, Bingqian ZHOU, Xia LIU, Xinjing ZHANG, Huan GUO, Wen LI, Yong SHENG, Yangli ZHU, Jian ZHOU, Yujie XU. Dynamic characteristics of compressed air energy storage system [J]. Energy Storage Science and Technology, 2023, 12(6): 1840-1853. |
[13] | Yonghong XU, Yuting WU, Hongguang ZHANG, Fubin YANG, Yan WANG. Experimental study on a micro-compressed air energy storage system based on a pneumatic motor [J]. Energy Storage Science and Technology, 2023, 12(6): 1854-1861. |
[14] | Weiling ZHANG, Han GU, Chao ZHANG, Ang GE, Yuanxu YING. Technical economic characteristics and development trends of compressed air energy storage [J]. Energy Storage Science and Technology, 2023, 12(4): 1295-1301. |
[15] | Qihui YU, Zhigang WEI, Guoxin SUN, Liang LU. Experimental and performance study of spray heat transfer-based compressed air quasi-isothermal expansion system [J]. Energy Storage Science and Technology, 2023, 12(3): 878-888. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||