[1]刘畅, 卓建坤, 赵东明, 等. 利用储能系统实现可再生能源微电网灵活安全运行的研究综述[J]. 中国电机工程学报, 2020, 40(1): 1-18, 369. [百度学术] LIU C, ZHUO J K, ZHAO D M, et al. A review on the utilization of energy storage system for the flexible and safe operation of renewable energy microgrids[J]. Proceedings of the CSEE, 2020, 40(1): 1-18, 369. [百度学术]
[2]马汀山, 王妍, 吕凯, 等. "双碳"目标下火电机组耦合储能的灵活性改造技术研究进展[J]. 中国电机工程学报, 2022, 42(S1): 136-148. [百度学术] MA T S, WANG Y, LYU K, et al. Research progress on flexible transformation technology of thermal power unit coupled energy storage under the goal of "double carbon"[J]. Proceedings of the CSEE, 2022, 42(S1): 136-148. [百度学术]
[3]张显荣, 徐玉杰, 杨立军, 等. 多类型火电-储热耦合系统性能分析与比较[J]. 储能科学与技术, 2021, 10(5): 1565-1578. [百度学术] ZHANG X R, XU Y J, YANG L J, et al. Performance analysis and comparison of multi-type thermal power-heat storage coupling systems[J]. Energy Storage Science and Technology, 2021, 10 (5): 1565-1578. [百度学术]
[4]BAUER D. Carnot-Batteries[C]//10th German-Japanese Environment and Energy Dialogue Forum, 2019. [百度学术]
[5]邢刚, 杨涵, 乔永辉, 等. 卡诺电池分类与关键要素研究进展[J/OL]. 材料导报, 2025: 1-28 [2025-11-03]. [百度学术] Xing G, Yang H, Qiao Y, et al. Research progress on the classification and key elements of Carnot batteries [J/OL]. Materials Reports, 2025: 1–28 [2025-11-03]. [百度学术]
[6]DUMONT O, FRATE G F, PILLAI A, et al. Carnot battery technology: A state-of-the-art review[J]. Journal of Energy Storage, 2020, 32: 101756. [百度学术]
[7]圣力, 薛新杰, 孛衍君, 等. 基于相变储能介质热泵储电系统的模拟与分析[J]. 储能科学与技术, 2022, 11(11): 3649-3657. [百度学术] SHENG L, XUE X J, BO Y J, et al. Simulation and analysis of pumped thermal electricity storage system based on phase change energy storage medium[J]. Energy Storage Science and Technology, 2022, 11(11): 3649-3657. [百度学术]
[8]BLANQUICETH J, CARDEMIL J M, HENRÍQUEZ M, et al. Thermodynamic evaluation of a pumped thermal electricity storage system integrated with large-scale thermal power plants[J]. Renewable and Sustainable Energy Reviews, 2023, 175:113134. [百度学术]
[9]赫广迅, 宋业琛. 基于火电站转型储能电站的超高温热泵及熔盐储换热系统工程应用设计[J]. 汽轮机技术, 2023, 65(2): 93-96, 146. [百度学术] HE G X, SONG Y C. Engineering application design of ultra-high temperature heat pump and molten salt heat storage and exchange system based on the rmal power station transformation to energy storage power station[J]. Turbine Technology, 2023, 65(2): 93-96, 146. [百度学术]
[10]XUE X J, ZHAO Y, ZHAO C Y. Multi-criteria thermodynamic analysis of pumped-thermal electricity storage with thermal integration and application in electric peak shaving of coal-fired power plant[J]. Energy Conversion and Management, 2022, 258: 115502. [百度学术]
[11]SOO KIM H, SEO J, MOON S, et al. Numerical study on carbon emissions and economics of a high temperature heat pump system for an industrial process[J/OL]. Energy Conversion and Management, 2024, 322: 119150. [百度学术]
[12]MA T, LI Z, LV K, et al. Design and performance analysis of deep peak shaving scheme for thermal power units based on high-temperature molten salt heat storage system[J/OL]. Energy, 2024, 288: 129557. [百度学术]
[13]TREVISAN S, PATHI S, BROWN J, et al. Thermal Performance and Dynamic Response Assessment of an Industrial Molten Salts Based Power-to-Heat System[A/OL]. SSRN, 2025[2025-09-12]. [百度学术]
[14]ZHOU J, WU W, BELLAMY L, et al. Thermal energy storage–coupled heat pump systems: Review of configurations and modelling approaches[J/OL]. Renewable and Sustainable Energy Reviews, 2026, 226: 116226. [百度学术]
[15]YONG Q, TIAN Y, QIAN X, et al. Retrofitting coal-fired power plants for grid energy storage by coupling with thermal energy storage[J/OL]. Applied Thermal Engineering, 2022, 215: 119048. [百度学术]
[16]YONG Q, JIN K, LI X, et al. Thermo-economic analysis for a novel grid-scale pumped thermal electricity storage system coupled with a coal-fired power plant[J/OL]. Energy, 2023, 280: 128109. [百度学术]
[17]VINNEMEIER P, WIRSUM M, MALPIECE D, et al. Integration of heat pumps into thermal plants for creation of large-scale electricity storage capacities[J/OL]. Applied Energy, 2016, 184: 506-522. [百度学术]
[18]赵瀚辰, 韩伟, 姚明宇, 等. 熔盐储热耦合压缩空气储能系统经济性分析[J]. 热力发电, 2024, 53(8): 1-8. [百度学术] ZHAO Hanchen, HAN Wei, YAO Mingyu, et al. Economic analysis of a compressed air energy storage system coupled with moltensalt thermal storage system[J]. Thermal Power Generation, 2024, 53(8): 1-8. [百度学术]
[19]谢蓉, 于健尧. 基于Aspen的超临界CO₂布雷顿循环性能研究[J]. 工程热物理学报, 2021, 42(10): 2544-2552. [百度学术] XIE R, YU J Y. Performance study of supercritical CO₂ Brayton cycle based on Aspen[J]. Journal of Engineering Thermophysics, 2021, 42(10): 2544-2552. [百度学术]
|