Energy Storage Science and Technology ›› 2014, Vol. 3 ›› Issue (6): 575-583.doi: 10.3969/j.issn.2095-4239.2014.06.002
• Research & development • Previous Articles Next Articles
WANG Feng1,2, LIAN Jiali1,2, WANG Kangli1, CHENG Shijie1, JIANG Kai1,2
Received:
2014-09-05
Online:
2014-11-01
Published:
2014-11-01
CLC Number:
WANG Feng, LIAN Jiali, WANG Kangli, CHENG Shijie, JIANG Kai. Recent progress in the application of carbon materials to supercapacitors and lead-carbon batteries[J]. Energy Storage Science and Technology, 2014, 3(6): 575-583.
[1] Armand M,Tarascon J M. Building better batteries[J]. Nature ,2008,451(7179):652-657. [2] Kim T H,Park J S,Chang S K, et al . The current move of lithium ion batteries towards the next phase[J]. Advanced Energy Materials ,2012,2(7):860-872. [3] Goodenough J B,Park K S. The Li-ion rechargeable battery:A perspective[J]. Journal of the American Chemical Society ,2013,135(4):1167-1176. [4] Kim S W,Seo D H,Ma X, et al . Electrode materials for rechargeable sodium-ion batteries:Potential alternatives to current lithium-ion batteries[J]. Advanced Energy Materials ,2012,2(7):710-721. [5] Palomares V,Serras P,Villaluenga I, et al . Na-ion batteries,recent advances and present challenges to become low cost energy storage systems[J]. Energy & Environmental Science ,2012,5(3):5884-5901. [6] Yan J,Wang Q,Wei T, et al . Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities[J]. Advanced Energy Materials ,2014,doi:10.1002/ aenm.201300816. [7] Gao H,Lian K. Proton-conducting polymer electrolytes and their applications in solid supercapacitors:A review[J]. RSC Advances ,2014,4(62):33091-33113. [8] Pavlov D,Nikolov P. Lead-carbon electrode with inhibitor of sulfation for lead-acid batteries operating in the HRPSoC duty[J]. Journal of the Electrochemical Society ,2012,159(8):A1215-A1225. [9] Pavlov D,Nikolov P. Capacitive carbon and electrochemical lead electrode systems at the negative plates of lead-acid batteries and elementary processes on cycling[J]. Journal of Power Sources ,2013,242:380-399. [10] Handbook of Industrial Diamonds and Diamond Films[M]. CRC Press,1997. [11] Kelly B T. The physics of graphite (London:Applied science); 1981b [J]. High Temp . Hige Pressures ,1981,13:245. [12] Smalley R E,Kroto H W,Heath J R. C60:Buckminsterfullerene[J]. Nature ,1985,318(6042):162-163. [13] Iijima S. Helical microtubules of graphitic carbon[J]. Nature ,1991,354(6348):56-58. [14] Novoselov K S,Geim A K,Morozov S V, et al . Electric field effect in atomically thin carbon films[J]. Science ,2004,306(5696):666-669. [15] Henning T,Salama F. Carbon in the universe[J]. Science ,1998,282(5397):2204-2210. [16] Geim A K,Novoselov K S. The rise of graphene[J]. Nature Materials ,2007,6(3):183-191. [17] Largeot C,Portet C,Chmiola J, Taberna P,Gogotsi y,Simon P. Relation between the ion size and pore size for an electric double-layer capacitor[J]. J. Am. Chem. Soc .,2008,130(9):2730-2731. [18] Kandalkar S G,Dhawale D S,Kim C K, et al . Chemical synthesis of cobalt oxide thin film electrode for supercapacitor application[J]. Synthetic Metals ,2010,160(11):1299-1302. [19] Wang G,Zhang L,Zhang J. A review of electrode materials for electrochemical supercapacitors[J]. Chemical Society Reviews ,2012,41(2):797-828. [20] Eberle U,Von Helmolt R. Sustainable transportation based on electric vehicle concepts:A brief overview[J]. Energy & Environmental Science ,2010,3(6):689-699. [21] Zhang J,Zhao X S. On the configuration of supercapacitors for maximizing electrochemical performance[J]. Chem . Sus . Chem. ,2012,5(5):818-841. [22] Simon P,Gogotsi Y. Materials for electrochemical capacitors[J]. Nature Materials ,2008,7(11):845-854. [23] Winter M,Brodd R J. What are batteries, fuel cells, and supercapacitors?[J]. Chemical Reviews ,2004,104(10):4245-4270. [24] Zhi M,Xiang C,Li J, et al . Nanostructured carbon-metal oxide composite electrodes for supercapacitors:A review[J]. Nanoscale ,2013,5(1):72-88. [25] Zhang L L,Zhao X S. Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Reviews ,2009,38(9):2520-2531. [26] Conway B E. Electrochemical Supercapacitors[M]. New York:Kluwer Academic/Plenum Press,1999. [27] Babakhani B,Ivey D G. Improved capacitive behavior of electrochemically synthesized Mn oxide/PEDOT electrodes utilized as electrochemical capacitors[J]. Electrochimica Acta ,2010,55(12):4014-4024. [28] Sarangapani S,Tilak B V,Chen C P. Materials for electrochemical capacitors theoretical and experimental constraints[J]. Journal of the Electrochemical Society ,1996,143(11):3791-3799. [29] Chmiola J,Largeot C,Taberna P L, et al . Monolithic carbide-derived carbon films for micro-supercapacitors[J]. Science ,2010,328(5977):480-483. [30] Yu G,Hu L,Vosgueritchian M, et al . Solution-processed graphene/MnO 2 nanostructured textiles for high-performance electrochemical capacitors[J]. Nano Letters ,2011,11(7):2905-2911. [31] Zhu Y,Murali S,Stoller M D, et al . Carbon-based supercapacitors produced by activation of graphene[J]. Science ,2011,332(6037):1537-1541. [32] Lu Q,Chen J G,Xiao J Q. Nanostructured electrodes for high-performance pseudocapacitors[J]. Angewandte Chemie International Edition ,2013,52(7):1882-1889. [33] Liu S,Sun S,You X Z. Inorganic nanostructured materials for high performance electrochemical supercapacitors[J]. Nanoscale ,2014,6(4):2037-2045. [34] Béguin F,Presser V,Balducci A, et al . Carbons and electrolytes for advanced supercapacitors[J]. Advanced Materials ,2014,26(14):2219-2251. [35] Rufford T E,Hulicova-Jurcakova D,Zhu Z, et al . Nanoporous carbon electrode from waste coffee beans for high performance supercapacitors[J]. Electrochemistry Communications ,2008,10(10):1594-1597. [36] Liu L,Ma W,Zhang Z. Macroscopic carbon nanotube assemblies:Preparation,properties,and potential applications[J]. Small ,2011,7(11):1504-1520. [37] Yao Z,Kane C L,Dekker C. High-field electrical transport in single-wall carbon nanotubes[J]. Physical Review Letters ,2000,84(13):2941. [38] Radosavljević M,Lefebvre J,Johnson A T. High-field electrical transport and breakdown in bundles of single-wall carbon nanotubes[J]. Physical Review B ,2001,64(24):41307. [39] Pop E,Mann D,Wang Q, et al . Thermal conductance of an individual single-wall carbon nanotube above room temperature[J]. Nano Letters ,2006,6(1):96-100. [40] Huang H,Liu C H,Wu Y, et al . Aligned carbon nanotube composite films for thermal management[J]. Advanced Materials ,2005,17(13):1652-1656. [41] Kordas K,Tóth G,Moilanen P, et al . Chip cooling with integrated carbon nanotube microfin architectures[J]. Applied Physics Letters ,2007,90(12):123105. [42] Niu C,Sichel E K,Hoch R, et al . High power electrochemical capacitors based on carbon nanotube electrodes[J]. Applied Physics Letters ,1997,70(11):1480-1482. [43] Zhang H,Cao G,Yang Y, et al . Comparison between electrochemical properties of aligned carbon nanotube array and entangled carbon nanotube electrodes[J]. Journal of the Electrochemical Society ,2008,155(2):K19-K22. [44] Futaba D N,Hata K,Yamada T, et al . Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes[J]. Nature Materials ,2006,5(12):987-994. [45] Kang D Y,Moon J H. Carbon nanotube balls and their application in supercapacitors[J]. ACS Applied Materials & Interfaces ,2013,6(1):706-711. [46] Novoselov K S. Graphene:Materials in the flatland (Nobel lecture)[J]. Angewandte Chemie International Edition ,2011,50(31):6986-7002. [47] Brodie B C. On the atomic weight of graphite[J]. Philosophical Transactions of the Royal Society of London ,1859:249-259. [48] Novoselov K S,Jiang D,Schedin F, et al . Two- dimensional atomic crystals[J]. Proceedings of the National Academy of Sciences of the United States of America ,2005,102(30):10451-10453. [49] Dreyer D R,Ruoff R S,Bielawski C W. From conception to realization:An historial account of graphene and some perspectives for its future[J]. Angewandte Chemie International Edition ,2010,49(49):9336-9344. [50] Calizo I,Balandin A A,Bao W, et al . Temperature dependence of the Raman spectra of graphene and graphene multilayers[J]. Nano Letters ,2007,7(9):2645-2649. [51] Balandin A A. Thermal properties of graphene and nanostructured carbon materials[J]. Nature Materials ,2011,10(8):569-581. [52] Nika D L,Balandin A A. Two-dimensional phonon transport in graphene[J]. Journal of Physics : Condensed Matter .,2012,24(23):233203. [53] Meyer J C,Geim A K,Katsnelson M I, et al . The structure of suspended graphene sheets[J]. Nature ,2007,446(7131):60-63. [54] Guo S,Dong S. Graphene nanosheet:Synthesis,molecular engineering,thin film,hybrids,and energy and analytical applications[J]. Chemical Society Reviews ,2011,40(5):2644-2672. [55] Zhou Y,Bao Q,Tang L A L, et al . Hydrothermal dehydration for the "green" reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties[J]. Chemistry of Materials ,2009,21(13):2950-2956. [56] Xu C,Xu B,Gu Y, et al . Graphene-based electrodes for electrochemical energy storage[J]. Energy & Environmental Science ,2013,6(5):1388-1414. [57] Li X,Cai W,An J, et al . Large-area synthesis of high-quality and uniform graphene films on copper foils [J]. Science ,2009,324(5932):1312-1314. [58] Subrahmanyam K S,Panchakarla L S,Govindaraj A, et al . Simple method of preparing graphene flakes by an arc-discharge method[J]. The Journal of Physical Chemistry C ,2009,113(11):4257-4259. [59] Kim K H,Yang M H,Cho K M, et al . High quality reduced graphene oxide through repairing with multi-layered graphene ball nanostructures[J]. Scientific Reports ,2013,33:3251. [60] Jiang L,Fan Z. Design of advanced porous graphene materials:From graphene nanomesh to 3D architectures[J]. Nanoscale ,2014,6(4):1922-1945. [61] Li H,Liu L,Yang F. Covalent assembly of 3D graphene/polypyrrole foams for oil spill cleanup[J]. Journal of Materials Chemistry A ,2013,1(10):3446-3453. [62] Chen P,Yang J J,Li S S, et al . Hydrothermal synthesis of macroscopic nitrogen-doped graphene hydrogels for ultrafast supercapacitor[J]. Nano Energy ,2013,2(2):249-256. [63] Zhao Y,Hu C,Hu Y, et al . A versatile, ultralight, nitrogen-doped graphene framework[J]. Angewandte Chemie ,2012,124(45):11533-11537. [64] Zhao Y,Liu J,Hu Y, et al . Highly compression-tolerant supercapacitor based on polypyrrole-mediated graphene foam electrodes[J]. Advanced Materials ,2013,25(4):591-595. [65] Wu Z S,Winter A,Chen L, et al . Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors[J]. Advanced Materials ,2012,24(37):5130-5135. [66] Zhao J,Ren W,Cheng H M. Graphene sponge for efficient and repeatable adsorption and desorption of water contaminations[J]. Journal of Materials Chemistry ,2012,22(38):20197-20202. [67] Huang J,Li G,Yang Y. A Semi-transparent plastic solar cell fabricated by a lamination process[J]. Advanced Materials ,2008,20(3):415-419. [68] Chen C C,Dou L,Zhu R, et al . Visibly transparent polymer solar cells produced by solution processing[J]. ACS Nano ,2012,6(8):7185-7190. [69] Yang Y,Jeong S,Hu L, et al . Transparent lithium-ion batteries[J]. Proceedings of the National Academy of Sciences ,2011,108(32):13013-13018. [70] Jung H Y,Karimi M B,Hahm M G, et al . Transparent,flexible supercapacitors from nano-engineered carbon films[J]. Scientific Reports ,2012,2:773. [71] Niu Z,Zhou W,Chen J, et al . A Repeated halving approach to fabricate ultrathin single-walled carbon nanotube films for transparent supercapacitors[J]. Small ,2013,9(4):518-524. [72] Chen T,Xue Y,Roy A K, et al . Transparent and stretchable high-performance supercapacitors based on wrinkled graphene electrodes[J]. ACS Nano ,2013,8(1):1039-1046. [73] Dietz H,Niepraschk H,Wiesener K, et al . Premature capacity loss in lead/acid batteries with antimony-free grids during cycling under constant-voltage-charging conditions 1. Characterization and causes of the phenomenon[J]. Journal of Power Sources ,1993,46(2):191-202. [74] Guo Y,Tang S,Meng G, et al . Failure modes of valve-regulated lead-acid batteries for electric bicycle applications in deep discharge[J]. Journal of Power Sources ,2009,191(1):127-133. [75] Nakamura K,Shiomi M,Takahashi K, et al . Failure modes of valve-regulated lead/acid batteries[J]. Journal of Power Sources ,1996,59(1):153-157. [76] Moseley P T. Consequences of including carbon in the negative plates of valve-regulated lead-acid batteries exposed to high-rate partial-state-of-charge operation[J]. Journal of Power Sources ,2009,191(1):134-138. [77] Shane R,Enos D G,Hund T D. Understanding the function and performance of carbon-enhanced lead-acid batteries:Milestone report for the DOE Energy Storage Systems program (FY11 Quarter 1:October through December 2010)[R]. Sandia National Laboratories ,2011. [78] Lam L T,Louey R. Development of ultra-battery for hybrid-electric vehicle applications[J]. Journal of Power Sources ,2006,158(2):1140-1148. [79] Furukawa J,Takada T,Monma D, et al . Further demonstration of the VRLA-type UltraBattery under medium-HEV duty and development of the flooded-type ultrabattery for micro-HEV applications[J]. Journal of Power Sources ,2010,195(4):1241-1245. [80] Xiang J,Ding P,Zhang H, et al . Beneficial effects of activated carbon additives on the performance of negative lead-acid battery electrode for high-rate partial-state-of-charge operation[J]. Journal of Power Sources ,2013,241:150-158. [81] Pavlov D,Rogachev T,Nikolov P, et al . Mechanism of action of electrochemically active carbons on the processes that take place at the negative plates of lead-acid batteries[J]. Journal of Power Sources ,2009,191(1):58-75. [82] Ebner E,Burow D,Panke J, et al . Carbon blacks for lead-acid batteries in micro-hybrid applications:Studied by transmission electron microscopy and Raman spectroscopy[J]. Journal of Power Sources ,2013,222:554-560. [83] Saravanan M,Sennu P,Ganesan M, et al . Multi-walled carbon nanotubes percolation network enhanced the performance of negative electrode for lead-acid battery[J]. Journal of the Electrochemical Society ,2013,160(1):A70-A76. [84] Swogger S W,Everill P,Dubey D P, et al . Discrete carbon nanotubes increase lead acid battery charge acceptance and performance[J]. Journal of Power Sources ,2014,261:55-63. [85] Ma J L,Wang D L,Chen F,Fang M X. Synthesis and characterization of lead sulfate/graphene nano sheets composites as anode materials for lead acid battery[J]. Chinese Journal of Inorganic Chemistry (无机材料学报),2013,29(9):1935-1941. [86] Hong B,Yu X,Jiang L, et al . Hydrogen evolution inhibition with diethylenetriamine modification of activated carbon for a lead-acid battery[J]. RSC Advances ,2014,4(63):33574-33577. [87] Zhao L,Chen B,Wu J, et al . Study of electrochemically active carbon,Ga 2 O 3 and Bi 2 O 3 as negative additives for valve-regulated lead-acid batteries working under high-rate,partial-state-of-charge conditions[J]. Journal of Power Sources ,2014,248:1-5. |
[1] | Zhen YAO, Qi ZHANG, Rui WANG, Qinghua LIU, Baoguo WANG, Ping MIAO. Application of biomass derived carbon materials in all vanadium flow battery electrodes [J]. Energy Storage Science and Technology, 2022, 11(7): 2083-2091. |
[2] | Nan LIN, Ulrike KREWER, Jochen ZAUSCH, Konrad STEINER, Haibo LIN, Shouhua FENG. Development and application of multiphysics models for electrochemical energy storage and conversion systems [J]. Energy Storage Science and Technology, 2022, 11(4): 1149-1164. |
[3] | Zhiwei ZHAO, Zhi YANG, Zhangquan PENG. Application of time-of-flight secondary ion mass spectrometry in lithium-based rechargeable batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 781-794. |
[4] | Siqi SHI, Zhangwei TU, Xinxin ZOU, Shiyu SUN, Zhengwei YANG, Yue LIU. Applying data-driven machine learning to studying electrochemical energy storage materials [J]. Energy Storage Science and Technology, 2022, 11(3): 739-759. |
[5] | Yun TANG, Fang YUE, Kaimo GUO, Lanchun LI, Wei CHEN. International development trend analysis of next-generation electrochemical energy storage technology [J]. Energy Storage Science and Technology, 2022, 11(1): 89-97. |
[6] | Xue HAN, Wei DENG, Xufeng ZHOU, Zhaopin LIU. Patenting activity of graphene for energy storage [J]. Energy Storage Science and Technology, 2022, 11(1): 335-349. |
[7] | Feng HE, Jingjing ZHANG, Yijun CHEN, Jian ZHANG, Deli WANG. Recent progress on carbon-based catalysts for electrochemical synthesis of H2O2 via oxygen reduction reaction [J]. Energy Storage Science and Technology, 2021, 10(6): 1963-1976. |
[8] | Shuai CHEN, Ling CHEN, Hao JIANG. Nitrogen-doped amorphous vanadium oxide nanosheet arrays for rapid-charging quasi-solid asymmetric supercapacitors [J]. Energy Storage Science and Technology, 2021, 10(3): 945-951. |
[9] | Rixin LAI, Chuanjian JIANG, Lin LIU, Wenfeng ZHANG, Yu XIANG, Hai MING, Hao ZHANG, Gaoping CAO, Yun DU. Research progress of the regulation of nitrogen doping of graphene and the influence mechanism of supercapacitor capacitive performance [J]. Energy Storage Science and Technology, 2020, 9(6): 1657-1667. |
[10] | Zhaoxia YANG, Jingyuan LOU, Xuejing LI, Hanwen WANG, Kezhong WANG, Dongjiang YOU. Status and development of the zinc-nickel single flow battery [J]. Energy Storage Science and Technology, 2020, 9(6): 1678-1690. |
[11] | Zheyi PEI, Gaofeng FAN, Xiaohui QIN. Demand analysis of large scale energy storage in China’s power system [J]. Energy Storage Science and Technology, 2020, 9(5): 1562-1565. |
[12] | QU Chenying, HOU Zhaoxia, WANG Xiaohui, WANG Jian, WANG Kai, LI Siyao. Research progress of gel polymer electrolytes on solid supercapacitors [J]. Energy Storage Science and Technology, 2020, 9(3): 776-783. |
[13] | ZHANG Jinliang, KANG Danmiao, LIU Junqing, SU Zhijiang, LIANG Wenbin. Electrochemical performance of water soluble pitch-based porous carbons [J]. Energy Storage Science and Technology, 2020, 9(3): 743-750. |
[14] | LIU Qinghua, ZHANG Sai, JIANG Mingzhe, WANG Qiushi, XING Xueqi, YANG Hong, HUANG Feng, LEMMON P John, MIAO Ping. Study on the low-cost flow battery technologies for energy storage [J]. Energy Storage Science and Technology, 2019, 8(S1): 60-64. |
[15] | MENG Xiangfei, PANG Xiulan, CHONG Feng, HOU Shaopan, QI Bin. Application analysis and prospect of electrochemical energy storage in power grid [J]. Energy Storage Science and Technology, 2019, 8(S1): 38-42. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||