Energy Storage Science and Technology ›› 2015, Vol. 4 ›› Issue (3): 248-259.doi: 10.3969/j.issn.2095-4239.2015.03.002
• Research highlight • Previous Articles Next Articles
CHEN Yuyang, HU Fei, ZHAN Yuanjie, CHEN Bin, WANG Hao, YAN Yong, LIN Mingxiang, XU Kaiqi, BEN Liubin, LIU Yanyan, HUANG Xuejie
Received:
2015-04-15
Online:
2015-06-19
Published:
2015-06-19
CLC Number:
CHEN Yuyang, HU Fei, ZHAN Yuanjie, CHEN Bin, WANG Hao, YAN Yong, LIN Mingxiang, XU Kaiqi, BEN Liubin, LIU Yanyan, HUANG Xuejie. Reviews of selected 100 recent papers for lithium batteries (Feb. 1,2015 to Mar. 31,2015)[J]. Energy Storage Science and Technology, 2015, 4(3): 248-259.
[1] Hsieh C T,Hsu H H,Mo C Y,et al. Medium-frequency induction sintering of lithium nickel cobalt manganese oxide cathode materials for lithium ion batteries[J]. Solid State Ionics,2015,270:39-46. [2] Camardese J,Li J,Abarbanel D W,et al. The effect of lithium content and core to shell ratio on structure and electrochemical performance of core-shell Li1+xNi0.6Mn0.4(1–x)O2-Li1+yNi0.2Mn0.8(1–y)O2 positive electrode materials[J]. Journal of the Electrochemical Society,2015,162(3):A269-A277. [3] Buchholz D,Li J,Passerini S,et al. X-ray absorption spectroscopy investigation of lithium-rich, cobalt-poor layered-oxide cathode material with high capacity[J]. Chemelectrochem,2015,2(1):85-97. [4] Geder J,Song J H,Kang S H,et al. Thermal stability of lithium-rich manganese-based cathode[J]. Solid State Ionics,2014,268:242-246. [5] Kuriyama H,Saruwatari H,Satake H,et al. Observation of anisotropic microstructural changes during cycling in LiNi0.5Co0.2Mn0.3O2 cathode material[J]. Journal of Power Sources,2015,275:99-105. [6] Genevois C,Koga H,Croguennec L,et al. Insight into the atomic structure of cycled lithium-rich layered oxide Li1.20Mn0.54Co0.13 Ni0.13O2 using HAADF STEM and electron nanodiffraction[J]. Journal of Physical Chemistry C,2015,119(1):75-83. [7] Taminato S,Hirayama M,Suzuki K,et al. Highly reversible capacity at the surface of a lithium-rich manganese oxide:A model study using an epitaxial film system[J]. Chemical Communications,2015,51(9):1673-1676. [8] Saravanan K,Jarry A,Kostecki R,et al. A study of room- temperature LixMn1.5Ni0.5O4 solid solutions[J]. Scientific Reports,2015,5,doi:10.1038/srep08027. [9] Howeling A,Glatthaar S,Notzel D,et al. Evidence of loss of active lithium in titanium-doped LiNi0.5Mn1.5O4/graphite cells[J]. Journal of Power Sources,2015,274:1267-1275. [10] Kim J W,Kim D H,Oh D Y,et al. Surface chemistry of LiNi0.5Mn1.5O4 particles coated by Al2O3 using atomic layer deposition for lithium-ion batteries[J]. Journal of Power Sources,2015,274:1254-1262. [11] Lee S,Yoon G,Jeong M,et al. Hierarchical surface atomic structure of a manganese-based spinel cathode for lithium-ion batteries[J]. Angewandte Chemie:International Edition,2015,54(4):1153-1158. [12] Kim C,Phillips P J,Xu L P,et al. Stabilization of battery electrode/electrolyte interfaces employing nanocrystals with passivating epitaxial shells[J]. Chemistry of Materials,2015,27(1):394-399. [13] Lin M X,Ben L B,Sun Y,et al. Insight into the atomic structure of high-voltage spinel LiNiO3Mn1.5O4 cathode material in the first cycle[J]. Chemistry of Materials,2015,27(1):292-303. [14] Qi X,Blizanac B,DuPasquier A,et al. Influence of thermal treated carbon black conductive additive on the performance of high voltage spinel Cr-doped LiNi0.5Mn1.5O4 composite cathode electrode[J]. Journal of the Electrochemical Society,2015,162(3):A339-A343. [15] Chung S Y,Choi S Y,Kim T H,et al. Surface-orientation-dependent distribution of subsurface cation-exchange defects in olivine-phosphate nanocrystals[J]. ACS Nano,2015,9(1):850-859. [16] Piper D M,Evans T,Leung K,et al. Stable silicon-ionic liquid interface for next-generation lithium-ion batteries[J]. Nature Communications,2015,6,doi:10.1038/nocmms7230. [17] Shimizu M,Usui H,Suzumura T,et al. Analysis of the deterioration mechanism of Si electrode as a Li-ion battery anode using Raman microspectroscopy[J]. Journal of Physical Chemistry C,2015,119(6):2975-2982. [18] Vogl U S,Lux S F,Crumlin E J,et al. The mechanism of SEI formation on a single crystal Si(100) electrode[J]. Journal of the Electrochemical Society,2015,162(4):A603-A607. [19] Blanchard D,Nale A,Sveinbjornsson D,et al. Nanoconfined LiBH4 as a fast lithium ion conductor[J]. Advanced Functional Materials,2015,25(2):184-192. [20] Biserni E,Xie M,Brescia R,et al. Silicon algae with carbon topping as thin-film anodes for lithium-ion microbatteries by a two-step facile method[J]. Journal of Power Sources,2015,274:252-259. [21] Favors Z,Bay H.H,Mutlu Z,et al. Towards scalable binderless electrodes:Carbon coated silicon nanofiber paper via Mg reduction of electrospun SiO2 Nanofibers[J]. Scientific Reports,2015,5,doi:10.1038/srep08246. [22] Li B,Yao F,Bae J J,et al. Hollow carbon nanospheres/silicon/ alumina core-shell film as an anode for lithium-ion batteries[J]. Scientific Reports,2015,5,doi:10.1038/srep07659. [23] Han Z J,Yamagiwa K,Yabuuchi N,et al. Electrochemical lithiation performance and characterization of silicon-graphite composites with lithium, sodium, potassium, and ammonium polyacrylate binders[J]. Physical Chemistry Chemical Physics,2015,17(5):3783-3795. [24] Liu X H,Zhang J,Si W P,et al. Sandwich nano architecture of Si/reduced graphene oxide bilayer nanomembranes for Li-ion batteries with long cycle life[J]. ACS Nano,2015,9(2):1198-1205. [25] Choi S H,Jung D S,Choi J W,et al. Superior lithium-ion storage properties of Si-based composite powders with unique Si@Carbon@Void@Graphene configuration[J]. Chemistry-A European Journal,2015,21(5):2076-2082. [26] Iwamura S,Nishihara H,Ono Y,et al. Li-rich Li-Si alloy as a lithium-containing negative electrode material towards high energy lithium-ion batteries[J]. Scientific Reports,2015,5,doi:10.1038/ srep08085. [27] Buonaiuto M,Neuhold S,Schroeder D J,et al. Functionalizing the surface of lithium-metal anodes[J]. Chempluschem,2015,80(2):363-367. [28] Levi M D,Lukatskaya M R,Sigalov S,et al. Solving the capacitive paradox of 2D mxene using electrochemical quartz-crystal admittance and in situ electronic conductance measurements[J]. Advanced Energy Materials,2015,5(1),doi:10.1002/ aenm.201400815. [29] Jeon J W,Kwon S R,Lutkenhaus J L. Polyaniline nanofiber/electrochemically reduced graphene oxide layer-by-layer electrodes for electrochemical energy storage[J]. Journal of Materials Chemistry A,2015,3(7):3757-3767. [30] Zhong Y R,Yang M,Zhou X L,et al. Orderly packed anodes for high-power lithium-ion batteries with super-long cycle life:Rational design of MnCO3/large-area graphene composites[J]. Advanced Materials,2015,27(5):806-812. [31] Yu C,Chen M,Li X J,et al. Hierarchically porous carbon architectures embedded with hollow nanocapsules for high-performance lithium storage[J]. Journal of Materials Chemistry A,2015,3(9):5054-5059. [32] Takahashi K,Srinivasan V. Examination of graphite particle cracking as a failure mode in lithium-ion batteries:A model-experimental study[J]. Journal of the Electrochemical Society,2015,162(4):A635-A645. [33] Huang X K,Cui S M,Chang J B,et al. A hierarchical tin/carbon composite as an anode for lithium-ion batteries with a long cycle life[J]. Angewandte Chemie:International Edition,2015,54(5):1490-1493. [34] Zhong Y R,Yang M,Zhou X L,et al. Towards excellent anodes for Li-ion batteries with high capacity and super long lifespan:Confining ultrasmall Sn particles into N-rich graphene-based nanosheets[J]. Particle & Particle Systems Characterization,2015,32(1):104-111. [35] Tavassol H,Cason M W,Nuzzo R G,et al. Influence of oxides on the stress evolution and reversibility during SnOx conversion and Li-Sn alloying reactions[J]. Advanced Energy Materials,2015,5(1),doi:10.1002/aenm.201400317. [36] Chen C C,Huang Y A,An C H,et al. Copper-doped dual phase Li4Ti5O12-TiO2 nanosheets as high-rate and long cycle life anodes for high-power lithium-ion batteries[J]. Chemsuschem,2015,8(1):114-122. [37] Guo J L,Zuo W H,Cai Y J,et al. A novel Li4Ti5O12-based high-performance lithium-ion electrode at elevated temperature[J]. Journal of Materials Chemistry A,2015,3(9):4938-4944. [38] Lu X,Gu L,Hu Y S,et al. New insight into the atomic-scale bulk and surface structure evolution of Li4Ti5O12 anode[J]. Journal of the American Chemical Society,2015,137(4):1581-1586. [39] Xie J,Oudenhoven J F M,Harks P,et al. Chemical vapor deposition of lithium phosphate thin-films for 3D all-solid-state Li-ion batteries[J]. Journal of the Electrochemical Society,2015,162(3):A249-A254. [40] Choi J H,Lee C H,Yu J H,et al. Enhancement of ionic conductivity of composite membranes for all-solid-state lithium rechargeable batteries incorporating tetragonal Li7La3Zr2O12 into a polyethylene oxide matrix[J]. Journal of Power Sources,2015,274:458-463. [41] Yamada T,Ito S,Omoda R,et al. All solid-state lithium-sulfur battery using a glass-type P2S5-Li2S electrolyte:Benefits on anode kinetics[J]. Journal of the Electrochemical Society,2015,162(4):A646-A651. [42] Whiteley J M,Kim J W,Kang C S,et al. Tin networked electrode providing enhanced volumetric capacity and pressureless operation for all-solid-state Li-ion batteries[J]. Journal of the Electrochemical Society,2015,162(4):A711-A715. [43] Brant J A,Massi D M,Holzwarth N A W,et al. Fast lithium ion conduction in Li2SnS3:Synthesis, physicochemical characterization, and electronic structure[J]. Chemistry of Materials,2015,27(1):189-196. [44] Gellert M,Gries K I,Zakel J,et al. Charge transfer across the interface between LiNi0.5Mn1.5O4 high-voltage cathode films and solid electrolyte films[J]. Journal of the Electrochemical Society,2015,162(4):A754-A759. [45] Nowak S,Berkemeier F,Schmitz G. Ultra-thin LIPON films - fundamental properties and application in solid state thin film model batteries[J]. Journal of Power Sources,2015,275:144-150. [46] Tung S O,Ho S,Yang M,et al. A dendrite-suppressing composite ion conductor from aramid nanofibres[J]. Nature Communications,2015,6,doi:10.1038/ncomms7152. [47] Nayak P K,Grinblat J,Levi M,et al. Understanding the effect of lithium bis (oxalato) borate (LiBOB) on the structural and electrochemical aging of Li and Mn rich high capacity Li1.2Ni0.16Mn0.56Co0.08O2 cathodes[J]. Journal of the Electrochemical Society,2015,162(4):A596-A602. [48] Guo J,Wen Z Y,Wu M F,et al. Vinylene carbonate-LiNO3:A hybrid additive in carbonic ester electrolytes for SEI modification on Li metal anode[J]. Electrochemistry Communications,2015,51:59-63. [49] Sussman M J,BroduschN,GauvinR,et al. Engineering 3-D Li-ion electrodes with enhanced charge storage properties based on solution-processed and sintered anatase nanocrystal-carbon mesoporous structures[J]. ACS Sustainable Chemistry & Engineering,2015,3(2):334-339. [50] Jeong M,Yokoshima T,Nara H,et al. Effect of electrolyte on cycle performances of the electrodeposited Sn-O-C composite anode of lithium secondary batteries[J]. Journal of Power Sources,2015,275:525-530. [51] Elia G A,Nobili F,TossiciR,et al. Nanostructured tin-carbon/ LiNi0.5Mn0.5O4 lithium-ion battery operating at low temperature[J]. Journal of Power Sources,2015,275:227-233. [52] Perea A,Zaghib K,Belanger D. Characterization of LiNi0.5Mn1.5O4 spinel electrode in the presence[J]. Journal of Materials Chemistry A,2015,3(6):2776-2783. [53] Petibon R,Harlow J,Le D B,et al. The use of ethyl acetate and methyl propanoate in combination with vinylene carbonate as ethylene carbonate-free solvent blends for electrolytes in Li-ion batteries[J]. Electrochimica Acta,2015,154:227-234. [54] Li S Y,Li L X,Liu J L,et al. Using a lithium difluoro (sulfato) borate additive to improve electrochemical performance of electrolyte based on lithium bis (oxalate) borate for LiNi0.5Mn1.5O4/Li cells[J]. Electrochimica Acta,2015,155:321-326. [55] Wei X L,Cosimbescu L,Xu W,et al. Towards high-performance nonaqueous redox flow electrolyte via ionic modification of active species[J]. Advanced Energy Materials,2015,5(1),doi:10.1002/aenm.201400678. [56] Deshpande R D,Ridgway P,Fu Y B,et al. The limited effect of VC in graphite/NMC cells[J]. Journal of the Electrochemical Society,2015,162(3):A330-A338. [57] Lu Y Y,Xu S M,Shu J,et al. High voltage LIB cathodes enabled by salt-reinforced liquid electrolytes[J]. Electrochemistry Communications,2015,51:23-26. [58] Pohl B,Hiller M M,Seidel S M,et al. Nitrile functionalized disiloxanes with dissolved LiTFSI as lithium ion electrolytes with high thermal and electrochemical stability[J]. Journal of Power Sources,2015,274:629-635. [59] Rosenman A,Elazari R,Salitra G,et al. The effect of interactions and reduction products of LiNO3, the anti-shuttle agent, in Li-S battery systems[J]. Journal of the Electrochemical Society,2015,162(3):A470-A473. [60] Matsui M,Wada A,Matsuda Y,et al. A novel aqueous lithium-oxygen cell based on the oxygen-peroxide redox couple[J]. Chemical Communications,2015,51(15):3189-3192. [61] Thieme S,Bruckner J,Meier A,et al. A lithium-sulfur full cell with ultralong cycle life:Influence of cathode structure and polysulfide additive[J]. Journal of Materials Chemistry A,2015,3(7):3808-3820. [62] Wu C,Yuan L X,Li Z,et al. Novel double-cathode configuration to improve the cycling stability of lithium-sulfur battery[J]. RSC Advances,2015,5(19):14196-14201. [63] Zhou G M,Li L,Wang D W,et al. A flexible sulfur-graphene- polypropylene separator integrated electrode for advanced Li-S batteries[J]. Advanced Materials,2015,27(4):641-647. [64] Kolosnitsyn V S,Kuzmina E V,Karaseva E V. On the reasons for low sulphur utilization in the lithium-sulphur batteries[J]. Journal of Power Sources,2015,274:203-210. [65] Agostini M,Hassoun J. A lithium-ion sulfur battery using a polymer, polysulfide-added membrane[J]. Scientific Reports,2015,5,doi:10.1038/srep07591. [66] Liang X,Hart C,Pang Q,et al. A highly efficient polysulfide mediator for lithium-sulfur batteries[J]. Nature Communications,2015,6,doi:10.1038/ncomms6682. [67] Nagao M,Hayashi A,Tatsumisago M,et al. Li2S nanocomposites underlying high-capacity and cycling stability in all-solid-state lithium-sulfur batteries[J]. Journal of Power Sources,2015,274:471-476. [68] Pang W K,Alam M,Peterson V K,et al. Structural evolution of electrodes in the NCR and CGR cathode-containing commercial lithium-ion batteries cycled between 3.0 and 4.5 V:An operando neutron powder-diffraction study[J]. Journal of Materials Research,2015,30(3):373-380. [69] Seid K A,Badot J C,PercaC,et al. An in situ multiscale study of ion and electron motion in a lithium-ion battery composite electrode[J]. Advanced Energy Materials,2015,5(2),doi:10.1002/aenm. 201400903. [70] Klett M,Svens P,Tengstedt C,et al. Uneven film formation across depth of porous graphite electrodes in cycled commercial Li-ion batteries[J]. Journal of Physical Chemistry C,2015,119(1):90-100. [71] Feng X N,Sun J,Ouyang M G,et al. Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module[J]. Journal of Power Sources,2015,275:261-273. [72] Seidlmayer S,Hattendorff J,Buchberger I,et al. In operando small-angle neutron scattering (SANS) on Li-ion batteries[J]. Journal of the Electrochemical Society,2015,162(2):A3116-A3125. [73] Itagaki M,Honda K,Hoshi Y,et al. In-situ EIS to determine impedance spectra of lithium-ion rechargeable batteries during charge and discharge cycle[J]. Journal of Electroanalytical Chemistry,2015,737:78-84. [74] Fleischhammer M,Waldmann T,Bisle G,et al. Interaction of cyclic ageing at high-rate and low temperatures and safety in lithium-ion batteries[J]. Journal of Power Sources,2015,274:432-439. [75] Hess S,Wohlfahrt-Mehrens M,Wachtler M. Flammability of Li-ion battery electrolytes:Flash point and self-extinguishing time measurements[J]. Journal of the Electrochemical Society,2015,162(2):A3084-A3097. [76] Guo Z,Liaw B Y,Qiu X P,et al. Optimal charging method for lithium ion batteries using a universal voltage protocol accommodating aging[J]. Journal of Power Sources,2015,274:957-964. [77] Dees D W,Abraham D P,Lu W Q,et al. Electrochemical modeling and performance of a lithium- and manganese-rich layered transition-metal oxide positive electrode[J]. Journal of the Electrochemical Society,2015,162(4):A559-A572. [78] Petzl M,Kasper M,Danzer M A. Lithium plating in a commercial lithium-ion battery:A low-temperature aging study[J]. Journal of Power Sources,2015,275:799-807. [79] Sabatier J,Francisco J M,Guillemard F,et al. Lithium-ion batteries modeling:A simple fractional differentiation based model and its associated parameters estimation method[J]. Signal Processing,2015,107:290-301. [80] Sarasketa-Zabala E,Gandiaga I,Martinez-Laserna E,et al. Cycle ageing analysis of a LiFePO4/graphite cell with dynamic model validations:Towards realistic lifetime predictions[J]. Journal of Power Sources,2015,275:573-587. [81] Sun F C,Xiong R. A novel dual-scale cell state-of-charge estimation approach for series-connected battery pack used in electric vehicles[J]. Journal of Power Sources,2015,274:582-594. [82] Wang F M,Rick J. Synergy of Nyquist and Bode electrochemical impedance spectroscopy studies to commercial type lithium ion batteries[J]. Solid State Ionics,2014,268:31-34. [83] Zhu J G,Sun Z C,Wei X Z,et al. A new lithium-ion battery internal temperature on-line estimate method based on electrochemical impedance spectroscopy measurement[J]. Journal of Power Sources,2015,274:990-1004. [84] Chaoui H,Golbon N,Hmouz I,et al. Lyapunov-based adaptive state of charge and state of health estimation for lithium-ion batteries[J]. IEEE Transactions on Industrial Electronics,2015,62(3):1610-1618. [85] Hernandez-Maya R,Rosas O,Saunders J,et al. Dynamic characterization of dendrite deposition and growth in Li-surface by electrochemical impedance spectroscopy[J]. Journal of the Electrochemical Society,2015,162(4):A687-A696. [86] Huang J,Li Z,Zhang J B,et al. An analytical three-scale impedance model for porous electrode with agglomerates in lithium-ion batteries[J]. Journal of the Electrochemical Society,2015,162(4):A585-A595. [87] Sarasketa-Zabala E,Aguesse F,Villarreal I,et al. Understanding lithium inventory loss and sudden performance fade in cylindrical cells during cycling with deep-discharge steps[J]. Journal of Physical Chemistry C,2015,119(2):896-906. [88] Xiao M,Choe S Y. Impedance model of lithium ion polymer battery considering temperature effects based on electrochemical principle:Part I for high frequency[J]. Journal of Power Sources,2015,277:403-415. [89] Rashid M,Gupta A. Effect of relaxation periods over cycling performance of a Li-ion battery[J]. Journal of the Electrochemical Society,2015,162(2):A3145-A3153. [90] Islam M M,Ostadhossein A,Borodin O,et al. ReaxFF molecular dynamics simulations on lithiated sulfur cathode materials[J]. Physical Chemistry Chemical Physics,2015,17(5):3383-3393. [91] Jana A,Ely D R,Garcia R E. Dendrite-separator interactions in lithium-based batteries[J]. Journal of Power Sources,2015,275:912-921. [92] Jonsson E,Johansson P. Electrochemical oxidation stability of anions for modern battery electrolytes:A CBS and DFT study[J]. Physical Chemistry Chemical Physics,2015,17(5):3697-3703. [93] Majdabadi M M,Farhad S,Farkhondeh M,et al. Simplified electrochemical multi-particle model for LiFePO4 cathodes in lithium-ion batteries[J]. Journal of Power Sources,2015,275:633-643. [94] Jain A,Hautier G,Ong S P,et al. Relating voltage and thermal safety in Li-ion battery cathodes:A high-throughput computational study[J]. Physical Chemistry Chemical Physics,2015,17(8):5942-5953. [95] Sumita M,Tanaka Y,Ikeda M,et al. Theoretically designed Li3PO4 (100) /LiFePO4 (010) coherent electrolyte/cathode interface for all solid-state Li ion secondary batteries[J]. Journal of Physical Chemistry C,2015,119(1):14-22. [96] Xie Y Y,Yuan C. An integrated anode stress model for commercial LixC6-LiyMn2O4 battery during the cycling operation[J]. Journal of Power Sources,2015,274:101-113. [97] Ong M T,Verners O,Draeger E W,et al. Lithium ion solvation and diffusion in bulk organic electrolytes from first-principles and classical reactive molecular dynamics[J]. Journal of Physical Chemistry B,2015,119(4):1535-1545. [98] Steiger J,Richter G,Wenk M,et al. Comparison of the growth of lithium filaments and dendrites under different conditions[J]. Electrochemistry Communications,2015,50:11-14. [99] Shen Y F,Yuan D D,Ai X P,et al. High capacity and cycling stability of poly (diaminoanthraquinone) as an organic cathode for rechargeable lithium batteries[J]. Journal of Polymer Science Part B:Polymer Physics,2015,53(4):235-238. [100] Fares R L,Webber M E. Combining a dynamic battery model with high-resolution smart grid data to assess microgrid islanding lifetime[J]. Applied Energy,2015,137:482-489. |
[1] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[2] | Yingwei PEI, Hong ZHANG, Xinghui WANG. Recent advances in the electrolytes of rechargeable zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2075-2082. |
[3] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[4] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[5] | ZHANG Yan, WANG Hai, LIU Zhaomeng, ZHANG Deliu, WANG Jiadong, LI Jianzhong, GAO Xuanwen, LUO Wenbin. Research progress of nickel-rich ternary cathode material ncm for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1693-1705. |
[6] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[7] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
[8] | LI Yitao, SHEN Kaier, PANG Quanquan. Advance in organics enhanced sulfide-based solid-state batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1902-1918. |
[9] | ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. |
[10] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[11] | Maolin FANG, Ying ZHANG, Lin QIAO, Shumin LIU, Zhongqi CAO, Huamin ZHANG, Xiangkun MA. Research progress of iron-chromium flow batteries technology [J]. Energy Storage Science and Technology, 2022, 11(5): 1358-1367. |
[12] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
[13] | Honghui WANG, Zeqin WU, Deren CHU. Thermal behavior of lithium titanate based Li ion batteries under slight over-discharging condition [J]. Energy Storage Science and Technology, 2022, 11(5): 1305-1313. |
[14] | Zhicheng CHEN, Zongxu LI, Ling CAI, Yisi LIU. Development status and future prospects of flexible metal-air batteries [J]. Energy Storage Science and Technology, 2022, 11(5): 1401-1410. |
[15] | Xinyi WANG, Weijie LI, Chao HAN, Huakun LIU, Shixue DOU. Challenges and optimization strategies of the anode of aqueous zinc-ion battery [J]. Energy Storage Science and Technology, 2022, 11(4): 1211-1225. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||