Energy Storage Science and Technology ›› 2015, Vol. 4 ›› Issue (1): 19-31.doi: 10.3969/j.issn.2095-4239.2015.01.002
• Research highlight • Previous Articles Next Articles
CHEN Bin, WANG Hao, YAN Yong, XU Kaiqi, LIN Mingxiang, TANG Daichun, SUN Yang, HU Fei, ZHAN Yuanjie, CHEN Yuyang, BEN Liubin, LIU Yanyan, HUANG Xuejie
Received:
2014-12-15
Online:
2015-02-19
Published:
2015-02-19
CLC Number:
CHEN Bin, WANG Hao, YAN Yong, XU Kaiqi, LIN Mingxiang, TANG Daichun, SUN Yang, HU Fei, ZHAN Yuanjie, CHEN Yuyang, BEN Liubin, LIU Yanyan, HUANG Xuejie. Reviews of selected 100 recent papers for lithium batteries (Oct. 1,2014 to Nov. 30,2014)[J]. Energy Storage Science and Technology, 2015, 4(1): 19-31.
[1] Hwang S,Kim S M,Bak S M, et al . Investigating local degradation and thermal stability of charged nickel-based cathode materials through real-time electron microscopy[J]. Acs Applied Materials & Interfaces ,2014,6(17):15140-15147. [2] Jo M,Noh M,Oh P, et al . A new high power LiNi 0.81 Co 0.1 Al 0.09 O 2 cathode material for lithium-ion batteries[J]. Advanced Energy Materials ,2014,doi:10.1002/aenm.201301583. [3] Yamamoto K,Orikasa Y,Takamatsu D, et al . Stabilization of the electronic structure at the cathode/electrolyte interface via MgO ultra-thin layer during lithium-ions insertion/extraction[J]. Electrochemistry ,2014,82(10):891-896. [4] Zhang J,Lu Q W,Fang J H, et al . Polyimide encapsulated lithium-rich cathode material for high voltage lithium-ion battery[J]. Acs Applied Materials & Interfaces ,2014,6(20):17965-17973. [5] West W C,Ishii Y,Kaneko M, et al . Deep discharge and elevated temperature cycling of LiMn 1.485 Ni 0.45 Cr 0.05 O 4 spinel cathodes: solid-state cell studies[J]. Ecs Electrochemistry Letters ,2014,3(10):A99-A101. [6] Duncan H,Hai B,Leskes M, et al . Relationships between Mn 3+ content, structural ordering, phase transformation, and kinetic properties in LiNi x Mn 2- x O 4 cathode materials[J]. Chemistry of Materials ,2014,26(18):5374-5382. [7] Zeng Y P,Wu X L,Mei P, et al . Effect of cationic and anionic substitutions on the electrochemical properties of LiNi 0.5 Mn 1.5 O 4 spinel cathode materials[J]. Electrochimica Acta ,2014,138:493-500. [8] Niketic S,Macneil M C D,Abu-Lebdeh Y. Improving the performance of high voltage LiMn 1.5 Ni 0.5 O 4 cathode material by carbon coating[J]. Journal of Power Sources ,2014,271:285-290. [9] Woodford W H,Carter W C,Chiang Y M. Strategies to avert electrochemical shock and their demonstration in spinels[J]. Journal of the Electrochemical Society ,2014,161(11):F3005-F3009. [10] Birgisson S,Jensen K M O,Christiansen T L, et al . In situ powder X-ray diffraction study of the hydro-thermal formation of LiMn 2 O 4 nanocrystallites[J]. Dalton Transactions ,2014,43(40):15075-15084. [11] Laszczynski N,Von Zamory J,Loeffler N, et al . Synthesis of LiMn 2 O 4 with outstanding lithium-insertion kinetics and long-term stability[J]. Chemelectrochem ,2014,1(9):1537-1542. [12] Park K Y,Park I,Kim H, et al . Anti-site reordering in LiFePO 4 :Defect annihilation on charge carrier injection[J]. Chemistry of Materials ,2014,26(18):5345-5351. [13] Bogart T D,Lu X T,Gu M, et al . Enhancing the lithiation rate of silicon nanowires by the inclusion of tin[J]. Rsc Advances ,2014,4(79):42022-42028. [14] Du F H,Li B,Fu W, et al . Surface binding of polypyrrole on porous silicon hollow nanospheres for Li-ion battery anodes with high structure stability[J]. Advanced Materials ,2014,26(35):6145-6150. [15] Rios O,Martha S K,Mcguire M A, et al . Monolithic composite electrodes comprising silicon nanoparticles embedded in lignin-derived carbon fibers for lithium-ion batteries[J]. Energy Technology ,2014,2(9-10):773-777. [16] Cloud J E,Wang Y L,Li X M, et al . Lithium silicide nanocrystals:Synthesis, chemical stability, thermal stability, and carbon encapsulation[J]. Inorganic Chemistry ,2014,53(20):11289-11297. [17] Song J X,Zhou M J,Yi R, et al . Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries[J]. Advanced Functional Materials ,2014,24(37):5904-5910. [18] Shao D,Zhong H X,Zhang L Z. Water-soluble conductive composite binder containing PEDOT: PSS as conduction promoting agent for Si anode of lithium-ion batteries[J]. Chemelectrochem ,2014,1(10):1679-1687. [19] Park H,Lee S,Yoo S, et al. Control of interfacial layers for high-performance porous Si lithium-ion battery anode[J]. Acs Applied Materials & Interfaces ,2014,6(18):16360-16367. [20] David L,Asok D,Singh G. Synthesis and extreme rate capability of Si-Al-C-N functionalized carbon nanotube spray-on coatings as Li-ion battery electrode[J]. Acs Applied Materials & Interfaces ,2014,6(18):16056-16064. [21] Yao F,Li B,So K, et al. A strategy to overcome the limits of carbon-based materials as lithium-ion battery anodes[J]. Carbon ,2014,79:563-571. [22] Chen Y,Zhang X J,Tian Y H, et al. Synthesis and characterization of silicon nanoparticles inserted into graphene sheets as high performance anode material for lithium ion batteries[J]. Journal of Nanomaterials ,2014,doi:10.1155/2014/734751. [23] Vogl U S,Das P K,Weber A Z, et al. Mechanism of interactions between CMC binder and Si single crystal facets[J]. Langmuir ,2014,30(34):10299-10307. [24] Sandu G,Brassart L,Gohy J F, et al. Surface coating mediated swelling and fracture of silicon nanowires during lithiation[J]. Acs Nano ,2014,8(9):9427-9436. [25] Birrozzi Agnese,Raccichini Rinaldo,Nobili Francesco, et al. High-stability graphene nano sheets/SnO 2 composite anode for lithium ion batteries[J]. Electrochimica Acta ,2014,137:228-234. [26] Deng S Z,Cherian C T,Liu X I, et al . Ultrathin hexagonal hybrid nanosheets synthesized by graphene oxide-assisted exfoliation of beta-Co(OH) 2 mesocrystals[J]. Chemistry-A European Journal ,2014,20(39):12444-12452. [27] Lee D H,Shim H W,Kim J C, et al. Oleic-acid-assisted carbon coating on Sn nanoparticles for Li ion battery electrodes with long-term cycling stability[J]. Rsc Advances ,2014,4(84):44563-44567. [28] Wang J W,Fan F F,Liu Y, et al. Structural evolution and pulverization of tin nanoparticles during lithiation-delithiation cycling[J]. Journal of the Electrochemical Society ,2014,161(11):F3019-F3024. [29] Dolotko O,Senyshyn A,Muhlbauer M J, et al . Neutron diffraction study of Li 4 Ti 5 O 12 at low temperatures[J]. Solid State Sciences ,2014,36:101-106. [30] Lin C F,Song S F,Lai M O, et al . Li 3.9 Cu 0.1 Ti 5 O 12 /CNTs composite for the anode of high-power lithium-ion batteries:Intrinsic and extrinsic effects[J]. Electrochimica Acta ,2014,143:29-35. [31] De Celis D R,Chen Z Q,Rahman M M, et al . Supplementing cold plasma with heat enables doping and nano-structuring of metal oxides[J]. Plasma Processes and Polymers ,2014,11(9):897-902. [32] Hong S,Choo M H,Kwon Y H, et al . Interfacial chemistry control for performance enhancement of micron tin-nickel/graphite battery anode[J]. Journal of the Electrochemical Society ,2014,161(12):A1851-A1859. [33] Kawaguchi T,Shimada K,Ichitsubo T, et al. Surface-layer formation by reductive decomposition of LiPF 6 at relatively high potentials on negative electrodes in lithium ion batteries and its suppression[J]. Journal of Power Sources ,2014,271:431-436. [34] Ogihara N,Yasuda T,Kishida Y, et al . Organic dicarboxylate negative electrode materials with remarkably small strain for high-voltage bipolar batteries[J]. Angewandte Chemie : International Edition ,2014,53(43):11467-11472. [35] Whiteley J M,Woo J H,Hu E Y, et al. Empowering the lithium metal battery through a silicon-based superionic conductor[J]. Journal of the Electrochemical Society ,2014,161(12):A1812-A1817. [36] Zhang J J,Yue L P,Hu P, et al. Taichi-inspired rigid-flexible coupling cellulose-supported solid polymer electrolyte for high-performance lithium batteries[J]. Scientific Reports ,2014,doi:10.1038/srep06272. [37] Tillmann S D,Isken P,Lex-Balducci A. Gel polymer electrolyte for lithium-ion batteries comprising cyclic carbonate moieties[J]. Journal of Power Sources ,2014,271:239-244. [38] Lee S J,Han J G,Lee Y, et al. A bi-functional lithium difluoro (oxalato) borate additive for lithium cobalt oxide/lithium nickel manganese cobalt oxide cathodes and silicon/graphite anodes in lithium-ion batteries at elevated temperatures[J]. Electrochimica Acta ,2014,137:1-8. [39] Wu F,Qian J,Chen R J, et al. An effective approach to protect lithium anode and improve cycle performance for Li-S batteries[J]. Acs Applied Materials & Interfaces ,2014,6(17):15542-15549. [40] Lu Y Y,Tu Z Y,Archer L A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes[J]. Nature Materials ,2014,13(10):961-969. [41] Nguyen C C,Lucht B L. Comparative study of fluoroethylene carbonate and vinylene carbonate for silicon anodes in lithium ion batteries[J]. Journal of the Electrochemical Society ,2014,161(12):A1933-A1938. [42] Miao R R,Yang J,Feng X J, et al. Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility[J]. Journal of Power Sources ,2014,271:291-297. [43] Xu R,Zhang X F,Yu C, et al. Paving the way for using Li 2 S batteries[J]. Chemsuschem ,2014,7(9):2457-2460. [44] Cintora-Juarez D,Perez-Vicente C,Ahmad S, et al . Electrochemical in battery polymerization of poly (alkylenedioxythiophene) over lithium iron phosphate for high-performance cathodes[J]. Physical Chemistry Chemical Physics ,2014,16(38):20724-20730. [45] Ugur M H,Kilic H,Berkem M L, et al . Synthesis by UV-curing and characterisation of polyurethane acrylate-lithium salts-based polymer electrolytes in lithium batteries[J]. Chemical Papers ,2014,68(11):1561-1572. [46] Wang D Y,Sinha N N,Burns J C, et al . A high precision study of the electrolyte additives vinylene carbonate, vinyl ethylene carbonate and lithium bis (oxalate) borate in LiCoO 2 /graphite pouch cells[J]. Journal of Power Sources ,2014,270:68-78. [47] Kalhoff J,Bresser D,Bolloli M, et al. Enabling LiTFSI-based electrolytes for safer lithium-ion batteries by using linear fluorinated carbonates as (Co) solvent[J]. Chemsuschem ,2014,7(10):2939-2946. [48] Lu J,Cheng L,Lau K C, et al . Effect of the size-selective silver clusters on lithium peroxide morphology in lithium-oxygen batteries[J]. Nature Communications ,2014,5:4895-4899. [49] Chen S Q,Huang X D,Sun B, et al. Multi-shelled hollow carbon nanospheres for lithium-sulfur batteries with superior performances[J]. Journal of Materials Chemistry A ,2014,2(38):16199-16207. [50] Lacey M J,Edstrom K,Brandell D. Analysis of soluble intermediates in the lithium-sulfur battery by a simple in situ electrochemical probe[J]. Electrochemistry Communications ,2014,46:91-93. [51] Seh Z W,Yu J H,Li W Y, et al . Two-dimensional layered transition metal disulphides for effective encapsulation of high-capacity lithium sulphide cathodes[J]. Nature Communications ,2014,doi:10.1038/ ncomms6017. [52] Wang Z Y,Dong Y F,Li H J, et al. Enhancing lithium-sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide[J]. Nature Communications ,2014,doi:10.1038/ncomms6002. [53] Yim T,Kang K S,Yu J S, et al . Effect of acid scavengers on electrochemical performance of lithium-sulfur batteries:Functional additives for utilization of LiPF 6 [J]. Japanese Journal of Applied Physics ,2014,53(8):5. [54] Nie A M,Cheng Y C,Zhu Y H, et al. Lithiation-induced shuffling of atomic stacks[J]. Nano Letters ,2014,14(9):5301-5307. [55] Hogstrom K C,Malmgren S,Hahlin M, et al. The buried carbon/solid electrolyte interphase in Li-ion batteries studied by hard X-ray photoelectron spectroscopy[J]. Electrochimica Acta ,2014,138:430-436. [56] Yaqub A,Lee Y J,Hwang M J, et al. Low temperature performance of graphite and LiNi 0.6 Co 0.2 Mn 0.2 O 2 electrodes in Li-ion batteries[J]. Journal of Materials Science ,2014,49(22):7707-7014. [57] Bulter H,Peters F,Schwenzel J, et al. Spatiotemporal changes of the solid electrolyte interphase in lithium-ion batteries detected by scanning electrochemical microscopy[J]. Angewandte Chemie : International Edition ,2014,53(39):10531-10535. [58] Liu D X,Wang J H,Pan K, et al . In situ quantification and visualization of lithium transport with neutrons[J]. Angewandte Chemie : International Edition ,2014,53(36):9498-9502. [59] Gotoh K,Izuka M,Arai J, et al. In situ Li-7 nuclear magnetic resonance study of the relaxation effect in practical lithium ion batteries[J]. Carbon ,2014,79:380-387. [60] Agubra V A,Fergus J W,Fu R J, et al. Analysis of effects of the state of charge on the formation and growth of the deposit layer on graphite electrode of pouch type lithium ion polymer batteries[J]. Journal of Power Sources ,2014,270:213-220. [61] Gambhire P,Hariharan K S,Khandelwal A, et al. A physics based reduced order aging model for lithium-ion cells with phase change[J]. Journal of Power Sources ,2014,270:281-291. [62] Greenleaf M,Li H,Zheng J P. Application of physical electric circuit modeling to characterize Li-ion battery electrochemical processes[J]. Journal of Power Sources ,2014,270:113-120. [63] Klass V,Behm M,Lindbergh G. A support vector machine-based state-of-health estimation method for lithium-ion batteries under electric vehicle operation[J]. Journal of Power Sources ,2014,270:262-272. [64] Liu X T,Wu J,Zhang C B, et al. A method for state of energy estimation of lithium-ion batteries at dynamic currents and temperatures[J]. Journal of Power Sources ,2014,270:151-157. [65] Rashid M,Gupta A. Mathematical model for combined effect of SEI formation and gas evolution in Li-ion batteries[J]. Ecs Electrochemistry Letters ,2014,3(10):A95-A98. [66] Schmidt J P,Weber A,Ivers-Tiffee E. A novel and precise measuring method for the entropy of lithium-ion cells:Delta S via electrothermal impedance spectroscopy[J]. Electrochimica Acta ,2014,137:311-319. [67] Chandrasekaran R. Quantification of bottlenecks to fast charging of lithium-ion-insertion cells for electric vehicles[J]. Journal of Power Sources ,2014,271:622-632. [68] Chen J B,Thapa A K,Berfield T A. In-situ characterization of strain in lithium battery working electrodes[J]. Journal of Power Sources ,2014,271:406-413. [69] Dong H C,Jin X N,Lou Y B, et al. Lithium-ion battery state of health monitoring and remaining useful life prediction based on support vector regression-particle filter[J]. Journal of Power Sources ,2014,271:114-123. [70] Klett M,Zavalis T G,Kjell M H, et al . Altered electrode degradation with temperature in LiFePO 4 /mesocarbon microbead graphite cells diagnosed with impedance spectroscopy[J]. Electrochimica Acta ,2014,141:173-181. [71] Leung P K,Moreno C,Masters I, et al . Real-time displacement and strain mappings of lithium-ion batteries using three-dimensional digital image correlation[J]. Journal of Power Sources ,2014,271:82-86. [72] Pharr M,Suo Z G,Vlassak J J. Variation of stress with charging rate due to strain-rate sensitivity of silicon electrodes of Li-ion batteries[J]. Journal of Power Sources ,2014,270:569-575. [73] Yang H,Fan F F,Liang W T, et al . A chemo-mechanical model of lithiation in silicon[J]. Journal of the Mechanics and Physics of Solids ,2014,70:349-361. [74] Mao Jing,Tiedemann William,Newman John. Simulation of temperature rise in Li-ion cells at very high currents[J]. Journal of Power Sources ,2014,271:444-454. [75] Uddin Kotub,Picarelli Alessandro,Lyness Christopher, et al . An acausal Li-ion battery pack model for automotive applications[J]. Energies ,2014,7(9):5675-5700. [76] Vazquez-Arenas Jorge,Gimenez Leonardo E,Fowler Michael, et al . A rapid estimation and sensitivity analysis of parameters describing the behavior of commercial Li-ion batteries including thermal analysis[J]. Energy Conversion and Management ,2014,87:472-482. [77] Choi Y S,Kang D M. Prediction of thermal behaviors of an air-cooled lithium-ion battery system for hybrid electric vehicles[J]. Journal of Power Sources ,2014,270:273-280. [78] Liu R,Chen J X,Xun J Z, et al. Numerical investigation of thermal behaviors in lithium-ion battery stack discharge[J]. Applied Energy ,2014,132:288-297. [79] Ouyang M G,Liu G M,Lu L G, et al. Enhancing the estimation accuracy in low state-of-charge area:A novel onboard battery model through surface state of charge determination[J]. Journal of Power Sources ,2014,270:221-237. [80] Avdeev I,Gilaki M. Structural analysis and experimental characterization of cylindrical lithium-ion battery cells subject to lateral impact[J]. Journal of Power Sources ,2014,271:382-391. [81] Larsson F,Andersson P,Blomqvist P, et al. Characteristics of lithium-ion batteries during fire tests[J]. Journal of Power Sources ,2014,271:414-420. [82] Murashko K A,Mityakov A V,Pyrhonen J, et al . Thermal parameters determination of battery cells by local heat flux measurements[J]. Journal of Power Sources ,2014,271:48-54. [83] Saw L H,Ye Y,Tay A A O. Electro-thermal characterization of lithium iron phosphate cell with equivalent circuit modeling[J]. Energy Conversion and Management ,2014,87:367-377. [84] Zinth V,Von luders C,Hofmann M, et al . Lithium plating in lithium-ion batteries at sub-ambient temperatures investigated by in situ neutron diffraction[J] . Journal of Power Sources ,2014,271:152-159. [85] Downie L E,Dahn J R. Determination of the voltage dependence of parasitic heat flow in lithium ion cells using isothermal microcalorimetry[J]. Journal of the Electrochemical Society ,2014,161(12):A1782-A1787. [86] Roberts S A,Brunini V E,Long K N, et al. A framework for three-dimensional mesoscale modeling of anisotropic swelling and mechanical deformation in lithium-ion electrodes[J]. Journal of the Electrochemical Society ,2014,161(11):F3052-F3059. [87] Wang S Q,Wang J,Vu L, et al . On line battery capacity estimation based on half-cell open circuit voltages[J] . Journal of the Electrochemical Society ,2014,161(12):A1788-A1793. [88] Wang Y T,Xing L D,Tang X W, et al. Oxidative stability and reaction mechanism of lithium bis (oxalate) borate as a cathode film-forming additive for lithium ion batteries[J]. Rsc Advances ,2014,4(63):33301-33306. [89] Yan K,Lee H W,Gao T, et al . Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode[J]. Nano Letters ,2014,14(10):6016-6022. [90] Kim Y,Jeong D Y,Han S C. First-principles investigation of the gas evolution from the cathodes of lithium-ion batteries during the storage test[J]. Journal of Materials Science ,2014,49(24):8444-8448. [91] Meng D,Zheng B,Lin G, et al. Numerical solution of 3D poisson-nernst-planck equations coupled with classical density functional theory for modeling ion and electron transport in a confined environment[J]. Communications in Computational Physics ,2014,16(5):1298-1322. [92] Odbadrakh K,Mcnutt N W,Nicholson D M, et al . Lithium diffusion at Si-C interfaces in silicon-graphene composites[J]. Applied Physics Letters ,2014,105(5):53906. [93] Tracy S J,Mauger L,Tan H J, et al . Polaron-ion correlations in Li x FePO 4 studied by X-ray nuclear resonant forward scattering at elevated pressure and temperature[J]. Physical Review B ,2014,90(9):doi:10.1103/PhysRevB.90.094303. [94] Urban A,Lee J,Ceder G. The configurational space of rocksalt-type oxides for high-capacity lithium battery electrodes[J]. Advanced Energy Materials ,2014,doi:10.1002/aenm.201400478. [95] Wang Y X,Klenk M,Page K, et al. Local structure and dynamics of lithium garnet ionic conductors:A model material Li 5 La 3 Ta 2 O 12 [J]. Chemistry of Materials ,2014,26(19):5613-5624. [96] Kim S Y,Qi Y. Property evolution of Al 2 O 3 coated and uncoated Si electrodes:A first principles investigation[J]. Journal of the Electrochemical Society ,2014,161(11):F3137-F3143. [97] Santosh K C,Longo R C,Xiong K, et al . Electrode-electrolyte interface for solid state Li-ion batteries:Point defects and mechanical strain[J]. Journal of the Electrochemical Society ,2014,161(11):F3104-F3110. [98] Gu M,Lee J,Kim Y, et al . Inhibiting the shuttle effect in lithium-sulfur batteries using a layer-by-layer assembled ion-permselective separator[J]. Rsc Advances ,2014,4(87):46940-46946. [99] Wang Q S,Jin J,Wu X W, et al . A shuttle effect free lithium sulfur battery based on a hybrid electrolyte[J]. Physical Chemistry Chemical Physics ,2014,16(39):21225-21229. [100] Yuca N,Zhao H,Song X Y, et al . A systematic investigation of polymer binder flexibility on the electrode performance of lithium-ion batteries[J]. Acs Applied Materials & Interfaces ,2014,6(19):17111-17118. |
[1] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[2] | Yingwei PEI, Hong ZHANG, Xinghui WANG. Recent advances in the electrolytes of rechargeable zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2075-2082. |
[3] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[4] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[5] | ZHANG Yan, WANG Hai, LIU Zhaomeng, ZHANG Deliu, WANG Jiadong, LI Jianzhong, GAO Xuanwen, LUO Wenbin. Research progress of nickel-rich ternary cathode material ncm for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1693-1705. |
[6] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[7] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
[8] | LI Yitao, SHEN Kaier, PANG Quanquan. Advance in organics enhanced sulfide-based solid-state batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1902-1918. |
[9] | ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. |
[10] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[11] | Maolin FANG, Ying ZHANG, Lin QIAO, Shumin LIU, Zhongqi CAO, Huamin ZHANG, Xiangkun MA. Research progress of iron-chromium flow batteries technology [J]. Energy Storage Science and Technology, 2022, 11(5): 1358-1367. |
[12] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
[13] | Honghui WANG, Zeqin WU, Deren CHU. Thermal behavior of lithium titanate based Li ion batteries under slight over-discharging condition [J]. Energy Storage Science and Technology, 2022, 11(5): 1305-1313. |
[14] | Zhicheng CHEN, Zongxu LI, Ling CAI, Yisi LIU. Development status and future prospects of flexible metal-air batteries [J]. Energy Storage Science and Technology, 2022, 11(5): 1401-1410. |
[15] | Xinyi WANG, Weijie LI, Chao HAN, Huakun LIU, Shixue DOU. Challenges and optimization strategies of the anode of aqueous zinc-ion battery [J]. Energy Storage Science and Technology, 2022, 11(4): 1211-1225. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||