Energy Storage Science and Technology ›› 2016, Vol. 5 ›› Issue (5): 762-774.doi: 10.12028/j.issn.2095-4239.2016.062
Previous Articles Next Articles
ZHAO Junnian, WU Yida, ZHAN Yuanjie, CHEN Yuyang, CHEN Bin, WANG Hao, YU Hailong, BEN Liubin, #br# LIU Yanyan, HUANG Xuejie
Received:
2016-08-19
Revised:
2016-08-20
Online:
2016-09-01
Published:
2016-09-01
ZHAO Junnian, WU Yida, ZHAN Yuanjie, CHEN Yuyang, CHEN Bin, WANG Hao, YU Hailong, BEN Liubin, . Reviews of selected 100 recent papers for lithium batteries(Jun. 1,2016 to Jul. 31,2016)[J]. Energy Storage Science and Technology, 2016, 5(5): 762-774.
[1] VALLVERDU G,MINVIELLE M,ANDREU N,et al. First principle study of the surface reactivity of layered lithium oxides LiMO2 (M= Ni, Mn, Co)[J]. Surface Science,2016,649:46-55. [2] YAMAMOTO Y,KATAOKA K,AKIMOTO J,et al. Quantitative analysis of cation mixing and local valence states in LiNixMn2-xO4 using concurrent HARECXS and HARECES measurements[J]. Microscopy,2016,65(3):253-262. [3] QI Y,MU L,ZHAO J,et al. pH-regulative synthesis of Na3(VPO4) [4] ISHIDZU K,OKA Y,NAKAMURA T. Lattice volume change during charge/discharge reaction and cycle performance of Li NixCoyMnzO2[J]. Solid State Ionics,2016,288:176-179. [5] HE X,WANG J,WANG R,et al. A 3D porous Li-rich cathode material with an in situ modified surface for high performance lithium ion batteries with reduced voltage decay[J]. Journal of Materials Chemistry A,2016,4(19):7230-7237. [6] NAYAK P K,GRINBLAT J,LEVI M,et al. Al doping for mitigating the capacity fading and voltage decay of layered Li and Mn-rich cathodes for Li-ion batteries[J]. Advanced Energy Materials,2016,6(8):doi: 10.1002/aenm.201502398. [7] LEE I,KIM J,HAN S,et al. Communication-preparation of highly monodisperse Ni-rich cathode material for lithium ion batteries[J]. Journal of the Electrochemical Society,2016,163(7): A1336-A1339. [8] MOHANTY D,DAHLBERG K,KING D M,et al. Modification of Ni-rich FCG NMC and NCA cathodes by atomic layer deposition:Preventing surface phase transitions for high-voltage lithium-ion batteries[J]. Scientific Reports,2016,6,doi:10.1038/ srep26532. [9] ISHIDA N,TAMURA N,KITAMURA N,et al. Crystal and electronic structure analysis and thermodynamic stabilities for electrochemically or chemically delithiated Li1.2-xMn0.54Ni0.13 Co0.13O2[J]. Journal of Power Sources,2016,319:255-261. [10] LIU H,CHEN Y,HY S,et al. Operando lithium dynamics in the Li-rich layered oxide cathode material via neutron diffraction[J]. Advanced Energy Materials,2016,6(7):doi: 10.1002/aenm. 201502143. [11] LONGO R C,KONG F,LIANG C,et al. Transition metal ordering optimization for high-reversible capacity positive electrode materials in the Li-Ni-Co-Mn pseudoquaternary system[J]. Journal of Physical Chemistry C,2016,120(16):8540-8549. [12] LUO K,ROBERTS M R,HAO R,et al. Charge-compensation in 3D-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen[J]. Nature Chemistry,2016,8(7):684-691. [13] KITTA M,KOHYAMA M. Stability of the LiMn2O4 surface in a LiPF6-based non-aqueous electrolyte studied by in-situ atomic force microscopy[J]. Japanese Journal of Applied Physics,2016, 55(6):65801. [14] GABRIELLI G,AXMANN P,DIEMANT T,et al. Combining optimized particle morphology with a niobium-based coating for long cycling-life, high-voltage lithium-ion batteries[J]. Chem.Sus. Chem.,2016,9(13):1670-1679. [15] AMOS C D,ROLDAN M A,VARELA M,et al. Revealing the reconstructed surface of Li Mn2O4[J]. Nano Letters,2016, 16(5):2899-2906. [16] KOZAWA T,MURAKAMI T,NAITO M. Insertion of lattice strains into ordered LiNi0.5Mn1.5O4 spinel by mechanical stress:A comparison of perfect versus imperfect structures as a cathode for Li-ion batteries[J]. Journal of Power Sources,2016,320: 120-126. [17] MAO J,DAI K,XUAN M,et al. Effect of chromium and niobium doping on the morphology and electrochemical performance of high-voltage spinel LiNi0.5Mn1.5O4 cathode material[J]. ACS Applied Materials & Interfaces,2016,8(14):9116-9124. [18] MEI T,PI W,ZHANG L,et al. Synthesis of shell-in-shell LiNi0.5Mn1.5O4 hollow microspheres and their enhanced performance for lithium ion batteries[J]. Materials Letters,2016,173: 141-144. [19] HWANG T,LEE J K,MUN J,et al. Surface-modified carbon nanotube coating on high-voltage LiNi0.5Mn1.5O4 cathodes for lithium ion batteries[J]. Journal of Power Sources,2016,322: 40-48. [20] WANG J,YAO S Z,YU Y Y,et al. Improving the stability properties of 5 V lithium nickel manganese oxide spinel by surface coating with cobalt aluminum oxides for lithium ion batteries[J]. Electrochimica Acta,2016,208:310-317. [21] PANG W K,LU C Z,LIU C E,et al. Crystallographic origin of cycle decay of the high-voltage LiNi0.5Mn1.5O4 spinel lithium-ion battery electrode[J]. Physical Chemistry Chemical Physics,2016, 18(26):17183-17189. [22] ZHANG J,SHEN J,WEI C,et al. Synthesis and enhanced electrochemical performance of the honeycomb TiO2/LiMn2O4 cathode materials[J]. Journal of Solid State Electrochemistry, 2016,20(7):2063-2069. [23] CASAS-CABANAS M,KIM C,RODRIGUEZ-CARVAJAL J,et al. Atomic defects during ordering transitions in LiNi0.5Mn1.5O4 and their relationship with electrochemical properties[J]. Journal of Materials Chemistry A,2016,4(21):8255-8262. [24] ELKHAKANI S,ROCHEFORT D,MACNEIL D D. ARC study of LiFePO4 with different morphologies prepared via three synthetic routes[J]. Journal of the Electrochemical Society,2016,163(7): A1311-A1316. [25] DOBBELAERE T,MATTELAER F,DENDOOVEN J,et al. Plasma-enhanced atomic layer deposition of iron phosphate as a positive electrode for 3D lithium-ion microbatteries[J]. Chemistry of Materials,2016,28(10):3435-3445. [26] SEO I,SENTHILKUMAR B,KIM K H,et al. Atomic structural and electrochemical impact of Fe substitution on nano porous LiMnPO4[J]. Journal of Power Sources,2016,320:59-67. [27] STROBRIDGE F C,LIU H,LESKES M,et al. Unraveling the complex delithiation mechanisms of olivine-type cathode materials, LiFexCo1-xPO4[J]. Chemistry of Materials,2016,28(11): 3676-3690. [28] FAN X,ZHU Y,LUO C,et al. Pomegranate-structured conversion-reaction cathode with a built-in Li source for high-energy Li-ion batteries[J]. ACS Nano,2016,10(5):5567-5577. [29] TAKEUCHI Y,YAMASHITA T,KURIYAMA K,et al. Synthesis and charge-discharge performance of Li5SiN3 as a cathode material of lithium secondary batteries[J]. Journal of Solid State Electrochemistry, 2016,20(7):1885-1888. [30] ASTROVA E V,RUMYANTSEV A M,LI G V,et al. Electrochemical lithiation of silicon with varied crystallographic orientation[J]. Semi Conductors,2016,50(7):963-969. [31] PIPER D M,LEE Y,SON S B,et al. Cross-linked aluminum dioxybenzene coating for stabilization of silicon electrodes[J]. Nano Energy,2016,22:202-210. [32] MARINARO M,WEINBERGER M,WOHLFAHRT-MEHRENS M. Toward pre-lithiatied high areal capacity silicon anodes for lithium-ion batteries[J]. Electrochimica Acta,2016,206:99-107. [33] SHI F,SONG Z,ROSS P N,et al. Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries[J]. Nature Communications,2016,7:11886. [34] KRAUSE A,DORFLER S,PIWKO M,et al. High area capacity lithium-sulfur full-cell battery with prelitiathed silicon nanowire-carbon anodes for long cycling stability[J]. Scientific Reports,2016,6:doi:10.1038/srep27982. [35] TOKRANOV A,KUMAR R,LI C,et al. Control and optimization of the electrochemical and mechanical properties of the solid electrolyte interphase on silicon electrodes in lithium ion batteries[J]. Advanced Energy Materials,2016,6(8):doi: 10.1002/aenm.201502302. [36] PAZ-GARCIA J M,TAIWO O O,TUDISCO E,et al. 4D analysis of the microstructural evolution of Si-based electrodes during lithiation:Time-lapse X-ray imaging and digital volume correlation[J]. Journal of Power Sources,2016,320:196-203. [37] DUAY J,SCHRODER K W,MURUGESAN S,et al. Monitoring volumetric changes in silicon thin-film anodes through in situ optical diffraction microscopy[J]. ACS Applied Materials & Interfaces, 2016,8(27):17642-17650. [38] FEARS T M,DOUCET M,BROWNING J F,et al. Evaluating the solid electrolyte interphase formed on silicon electrodes:A comparison of ex situ X-ray photoelectron spectroscopy and in situ neutron reflectometry[J]. Physical Chemistry Chemical Physics, 2016,18(20):13927-13940. [39] CHEN M,WANG Z L,WANG A N,et al. Novel self-assembled natural graphite based composite anodes with improved kinetic properties in lithium-ion batteries[J]. Journal of Materials Chemistry A,2016,4(25):9865-9872. [40] KWON H T,LEE C K,JEON K J,et al. Silicon diphosphide:A Si-based three-dimensional crystalline framework as a high performance Li-ion battery anode[J]. ACS Nano,2016, 10(6):5701-5709. [41] PARK G O,YOON J,SHON J K,et al. Discovering a dual-buffer effect for lithium storage:Durable nanostructured ordered mesoporous Co-Sn intermetallic electrodes[J]. Advanced Functional Materials,2016,26(17):2800-2808. [42] HONG S A,LEE S B,JOO O S,et al. Synthesis of lithium titanium oxide (Li4Ti5O12) with ultrathin carbon layer using supercritical fluids for anode materials in lithium batteries[J]. Journal of Materials Science,2016,51(13):6220-6234. [43] GRIFFITH K J,FORSE A C,GRIFFIN J M,et al. High-rate intercalation without nanostructuring in metastable Nb2O5 bronze phases[J]. Journal of the American Chemical Society,2016, 138(28):8888-8899. [44] HUANG T,ZHENG X,WU M,et al. Ethyl 3,3,3- trifluoropropanoate as an additive to improve the cycling performance of LiMn2O4 cathode on lithium-ion batteries at elevated temperature[J]. Journal of Power Sources,2016,318:264-269. [45] BASILE A,BHATT A I,O'MULLANE A P. Stabilizing lithium metal using ionic liquids for long-lived batteries[J]. Nature Communications,2016,7:11794. [46] SUO L,BORODIN O,SUN W,et al. Advanced high-voltage aqueous lithium-ion battery enabled by "water-in-bisalt" electrolyte[J]. Angewandte Chemie (International ed. in English),2016,55 (25):7136-7141. [47] MILIEN M S,TOTTEMPUDI U,SON M,et al. Development of lithium dimethyl phosphate as an electrolyte additive for lithium ion batteries[J]. Journal of the Electrochemical Society,2016, 163(7):A1369-A1372. [48] BROWN N R,MAKKAPATI T,TEETERS D. Stabilization of the polymer electrolyte/lithium metal electrode interface with increased ion conduction using PEO polymer/low molecular weight PE-b-PEO diblock copolymer composite bi-layer films[J]. Solid State Ionics,2016,288:207-212. [49] LINDGREN F,XU C,NIEDZICKI L,et al. SEI formation and interfacial stability of a Si electrode in a LiTDI-salt based electrolyte with FEC and VC additives for Li-ion batteries[J]. ACS Applied Materials & Interfaces,2016,8(24):15758-15766. [50] CHO Y G,PARK H,LEE J I,et al. Organogel electrolyte for high-loading silicon batteries[J]. Journal of Materials Chemistry A,2016,4(21):8005-8009. [51] ELIA G A,ULISSI U,MUELLER F,et al. A long-life lithium ion battery with enhanced electrode/electrolyte interface by using an ionic liquid solution[J]. Chemistry-A European Journal,2016, 22(20):6808-6814. [52] PETIBON R,CHEVRIER V L,AIKEN C P,et al. Studies of the capacity fade mechanisms of LiCoO2/Si-alloy:Graphite cells[J]. Journal of the Electrochemical Society,2016,163(7): A1146-A1156. [53] POPOVIC J,HASEGAWA G,MOUDRAKOVSKI I,et al. Infiltrated porous oxide monoliths as high lithium transference number electrolytes[J]. Journal of Materials Chemistry A,2016, 4(19):7135-7140. [54] ZHENG X,HUANG T,PAN Y,et al. 3,3'-sulfonyldipro- pionitrile:A novel electrolyte additive that can augment the high-voltage performance of LiNi1/3Co1/3Mn1/3O2/graphite batteries[J]. Journal of Power Sources,2016,319: 116-123. [55] LUO Y,LU T L,ZHANG Y X,et al. Enhanced electrochemical performance of LiNi0.5Mn1.5O4 cathode using an electrolyte with 3-(1,1,2,2-tetrafluoroethoxy)-1,1,2,2-tetrafluoropropane[J]. Journal of Power Sources,2016,323:134-141. [56] HAN J H,WANG M,BAI P,et al. Dendrite suppression by shock electrodeposition in charged porous media[J]. Scientific Reports, 2016,6,doi:10.1038/srep28054. [57] PHAM H Q,HWANG E H,KWON Y G,et al. Understanding the interfacial phenomena of a 4.7 V and 55 degrees C Li-ion battery with Li-rich layered oxide cathode and graphite anode and its correlation to high-energy cycling performance[J]. Journal of Power Sources,2016,323:220-230. [58] HAMENU L,LEE HS,LATIFATU M,et al. Lithium-silica nanosalt as a low-temperature electrolyte additive for lithium-ion batteries[J]. Current Applied Physics,2016,16(6):611-617. [59] RUGGERI I,ARBIZZANI C,SOAVI F. A novel concept of semi-solid, Li redox flow air (O2) battery:A breakthrough towards high energy and power batteries[J]. Electrochimica Acta,2016, 206:291-300. [60] MARCEAU H,KIM C S,PAOLELLA A,et al. In operando scanning electron microscopy and ultraviolet-visible spectroscopy studies of lithium/sulfur cells using all solid-state polymer electrolyte[J]. Journal of Power Sources,2016,319:247-254. [61] CAO R G,CHEN J Z,HAN K S,et al. Effect of the anion activity on the stability of li metal anodes in lithium-sulfur batteries[J]. Advanced Functional Materials,2016,26(18):3059-3066. [62] LI X,LUSHINGTON A,SUN Q,et al. Safe and durable high-temperature lithium-sulfur batteries via molecular layer deposited coating[J]. Nano Lett.,2016,16(6):3545-3549. [63] ZHENG D,YANG X Q,QU D. Stability of the solid electrolyte interface on the Li electrode in Li-S batteries[J]. ACS Applied Materials & Interfaces,2016,8(16):10360-10366. [64] CHEN H,LU Y C. A high-energy-density multiple redox semi-solid-liquid flow battery[J]. Advanced Energy Materials, 2016,6(8):doi: 10.1002/aenm.201502183. [65] FANG R,ZHAO S,Hou P,et al. 3D interconnected electrode materials with ultrahigh areal sulfur loading for Li-S batteries[J]. Advanced Materials,2016,28:3374-3382. [66] GUO Y S,SMITH R B,YU Z H,et al. Li intercalation into graphite:Direct optical imaging and cahn-hilliard reaction dynamics[J]. Journal of Physical Chemistry Letters,2016, 7(11):2151-2156. [67] GAN Z,GU M,TANG J,et al. Direct mapping of charge distribution during lithiation of ge nanowires using off-axis electron holography[J]. Nano Lett.,2016,16(6):3748-3753. [68] DASH R,PANNALA S. Theoretical limits of energy density in silicon-carbon composite anode based lithium ion batteries[J]. Scientific Reports,2016,6:27449. [69] LARFAILLOU S,GUY-BOUYSSOU D,LE CRAS F,et al. Comprehensive characterization of all-solid-state thin films commercial microbatteries by electrochemical impedance spectroscopy[J]. Journal of Power Sources,2016,319:139-146. [70] SUN F,MARKOTTER H,DONG K,et al. Investigation of failure mechanisms in silicon based half cells during the first cycle by micro X-ray tomography and radiography[J]. Journal of Power Sources,2016,321:174-184. [71] GAN Z F,GU M,TANG J S,et al. Direct mapping of charge distribution during lithiation of ge nanowires using off-axis electron holography[J]. Nano Letters,2016,16(6):3748-3753. [72] MAKIMURA Y,SASAKI T,OKA H,et al. Studying the charging process of a lithium-ion battery toward 10 V by in situ X-ray absorption and diffraction:Lithium insertion/extraction with side reactions at positive and negative electrodes[J]. Journal of the Electrochemical Society,2016,163(7):A1450-A1456. [73] LANDESFEIND J,HATTENDORFF J,EHRL A,et al. Tortuosity determination of battery electrodes and separators by impedance spectroscopy[J]. Journal of the Electrochemical Society,2016,163(7):A1373-A1387. [74] MAIBACH J,LINDGREN F,ERIKSSON H,et al. Electric potential gradient at the buried interface between lithium-ion battery electrodes and the SEI observed using photoelectron spectroscopy[J]. Journal of Physical Chemistry Letters,2016,7(10):1775- 1780. [75] CHEONG J Y,CHANG J H,SEO H K,et al. Growth dynamics of solid electrolyte interphase layer on SnO2 nanotubes realized by graphene liquid cell electron microscopy[J]. Nano Energy, 2016,25:154-160. [76] SUN F,MARKOTTER H,ZHOU D,et al. In situ radiographic investigation of (De) lithiation mechanisms in a tin-electrode lithium-ion battery[J]. Chem. Sus. Chem.,2016,9(9):946-950. [77] BACH P,VALENCIA-JAIME I,RUETT U,et al. Electrochemical Lithiation cycles of gold anodes observed by in situ high-energy X-ray diffraction[J]. Chemistry of Materials,2016,28(9): 2941-2948. [78] PIETSCH P,HESS M,LUDWIG W,et al. Combining operando synchrotron X-ray tomographic microscopy and scanning X-ray diffraction to study lithium ion batteries[J]. Scientific Reports,2016, [79] HE K,ZHANG S,LI J,et al. Visualizing non-equilibrium lithiation of spinel oxide via in situ transmission electron microscopy[J]. Nature Communications,2016,7:doi: 10.1038/ ncomms11441. [80] LIU Y M,G NICOLAU B,ESBENSHADE J L,et al. Characterization of the cathode electrolyte interface in lithium ion batteries by desorption electrospray ionization mass spectrometry[J]. Analytical Chemistry,2016,88(14):7171-7177. [81] DONG X,CHEN L,SU X,et al. Flexible aqueous lithium-ion battery with high safety and large volumetric energy density[J]. Angewandte Chemie (International ed. in English),2016, 55(26):7474-7477. [82] LEE J H,YOON C S,HWANG J Y,et al. High-energy-density lithium-ion battery using a carbon-nanotube-Si composite anode and a compositionally graded Li Ni0.85Co0.05Mn0.10O2 cathode[J]. Energy & Environmental Science,2016,9(6):2152-2158. [83] NA W,LEE AS,LEE J H,et al. Lithium dendrite suppression with UV-curable polysilsesquioxane separator binders[J]. ACS Applied Materials & Interfaces,2016,8(20):12852-12858. [84] HONG S,JO H,SONG S W. Lithium diffusivity of tin-based film model electrodes for lithium-ion batteries[J]. Journal of Electrochemical Science and Technology,2015,6(4):116-120. [85] LI B,LI S M,XU J J,et al. A new configured lithiated silicon-sulfur battery built on 3D graphene with superior electrochemical performances[J]. Energy & Environmental Science,2016,9(6):2025-2030. [86] BERECIBAR M,DEVRIENDT F,DUBARRY M,et al. Online state of health estimation on NMC cells based on predictive analytics[J]. Journal of Power Sources,2016,320:239-250. [87] KAWAURA H,HARADA M,KONDO Y,et al. Operando measurement of solid electrolyte interphase formation at working electrode of Li-ion battery by time-slicing neutron reflectometry[J]. ACS Applied Materials & Interfaces,2016,8(15):9540-9544. [88] VIVEK J P,BERRY N,PAPAGEORGIOU G,et al. Mechanistic insight into the superoxide induced ring opening in propylene carbonate based electrolytes using in situ surface-enhanced infrared spectroscopy[J]. Journal of the American Chemical Society,2016, 138(11):3745-3751. [89] ALEXANDER J P,ELEANOR G,Sang B L,et al. The reaction current distribution in battery electrode materials revealed by XPS-based state-of-charge mapping[J]. Physical Chemistry Chemical Physics,2016,doi:10.1039/C6CP03271K. [90] LI M,ZHU W,ZHANG P,et al. Graphene-analogues boron nitride nanosheets confining ionic liquids:A high-performance quasi-liquid solid electrolyte[J]. Small,2016,12(26):3535- 3542. [91] EL KHAKANI S,ROCHEFORT D,MACNEIL D D. ARC study of LiFePO4 with different morphologies prepared via three synthetic routes[J]. Journal of the Electrochemical Society,2016,163(7): A1311-A1316. [92] SEO D H,LEE J,URBAN A,et al. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials[J]. Nature Chemistry,2016,8(7): 692-697. [93] TAN J W,RYAN E M. Computational study of electro-convection effects on dendrite growth in batteries[J]. Journal of Power Sources,2016,323:67-77. [94] BRADY N W,KNEHR K W,CAMA C A,et al. Galvanostatic interruption of lithium insertion into magnetite:Evidence of surface layer formation[J]. Journal of Power Sources,2016,321: 106-111. [95] WANG Z Y,SANTHANAGOPALAN D,ZHANG W,et al. In situ STEM-EELS observation of nanoscale interfacial phenomena in all-solid-state batteries[J]. Nano Letters,2016,16(6):3760- 3767. [96] ABDELLAHI A,URBAN A,DACEK S,et al. The effect of cation disorder on the average Li intercalation voltage of transition-metal oxides[J]. Chemistry of Materials,2016, 28(11): 3659-3665. [97] ADAMS D J. Quantum mechanical theory diffusion in solids. An application to H in silicon and Li in LiFePO4[J]. Solid State Ionics,2016,290:116-120. [98] OKUMURA T,YAMAGUCHI Y,KOBAYASHI H. X-ray absorption near-edge structures of LiMn2O4 and LiNi0.5Mn1.5O4 spinet oxides for lithium-ion batteries:The first-principles calculation study[J]. Physical Chemistry Chemical Physics, 2016,18(27):17827-17830. [99] LIN R,AMRUTE A P,KRUMEICH F,et al. Phase-controlled synthesis of iron phosphates via phosphation of β-FeOOH nanorods[J]. Cryst. Eng. Comm.,2016,18(18):3174-3185. [100] CHEN Y,SUN Y,HUANG X. Origin of the Ni/Mn ordering in high-voltage spinel LiNi0.5Mn1.5O4:The role of oxygen vacancies and cation doping[J]. Computational Materials Science,2016,115:109-116. |
[1] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[2] | Yingwei PEI, Hong ZHANG, Xinghui WANG. Recent advances in the electrolytes of rechargeable zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2075-2082. |
[3] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[4] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[5] | ZHANG Yan, WANG Hai, LIU Zhaomeng, ZHANG Deliu, WANG Jiadong, LI Jianzhong, GAO Xuanwen, LUO Wenbin. Research progress of nickel-rich ternary cathode material ncm for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1693-1705. |
[6] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[7] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
[8] | LI Yitao, SHEN Kaier, PANG Quanquan. Advance in organics enhanced sulfide-based solid-state batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1902-1918. |
[9] | ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. |
[10] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[11] | Maolin FANG, Ying ZHANG, Lin QIAO, Shumin LIU, Zhongqi CAO, Huamin ZHANG, Xiangkun MA. Research progress of iron-chromium flow batteries technology [J]. Energy Storage Science and Technology, 2022, 11(5): 1358-1367. |
[12] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
[13] | Honghui WANG, Zeqin WU, Deren CHU. Thermal behavior of lithium titanate based Li ion batteries under slight over-discharging condition [J]. Energy Storage Science and Technology, 2022, 11(5): 1305-1313. |
[14] | Zhicheng CHEN, Zongxu LI, Ling CAI, Yisi LIU. Development status and future prospects of flexible metal-air batteries [J]. Energy Storage Science and Technology, 2022, 11(5): 1401-1410. |
[15] | Xinyi WANG, Weijie LI, Chao HAN, Huakun LIU, Shixue DOU. Challenges and optimization strategies of the anode of aqueous zinc-ion battery [J]. Energy Storage Science and Technology, 2022, 11(4): 1211-1225. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||