Energy Storage Science and Technology ›› 2017, Vol. 6 ›› Issue (4): 758-769.doi: 10.12028/j.issn.2095-4239.2017.0107
Previous Articles Next Articles
ZHAN Yuanjie, CHEN Yuyang, CHEN Bin, WANG Hao, ZHAO Junnian, WU Yida, JIN Zhou,ZHANG Hua, BEN Liubin, YU Hailong, LIU Yanyan, HUANG Xuejie
Received:
2017-06-19
Revised:
2017-06-27
Online:
2017-07-01
Published:
2017-07-01
ZHAN Yuanjie, CHEN Yuyang, CHEN Bin, WANG Hao, ZHAO Junnian, WU Yida, JIN Zhou,ZHANG Hua, BEN Liubin, YU Hailong, LIU Yanyan, HUANG Xuejie. Reviews of selected 100 recent papers for lithium batteries(Apr. 1,2017 to May 31,2017)[J]. Energy Storage Science and Technology, 2017, 6(4): 758-769.
[1] LEE J W, PARK Y J. Surface-modified Li[Ni0.8Co0.15Al0.05]O2 cathode fabricated using polyvinylidene fluoride as a novel coating[J]. Journal of Electrochemical Science and Technology, 2016, 7(4): 263-268.
[2] PARK K, PARK J H, HONG S G, et al. Re-construction layer effect of LiNi0.8Co0.15Mn0.05O2 with solvent evaporation process[J]. Scientific Reports, 2017, 7: doi: 10.1038/srep44557. [3] XU M, FEI L, LU W, et al. Engineering hetero-epitaxial nanostructures with aligned Li-ion channels in Li-rich layered oxides for high-performance cathode application[J]. Nano Energy, 2017, 35: 271-280. [4] WAGNER R, KRAFT V, STREIPERT B, et al. Magnesium-based additives for the cathode slurry to enable high voltage application of lithium-ion batteries[J]. Electrochimica Acta, 2017, 228: 9-17. [5] LI B, YAN H, ZUO Y, et al. Tuning the reversibility of oxygen redox in lithium-rich layered oxides[J]. Chemistry of Materials, 2017, 29(7): 2811-2818. [6] YAN P, ZHENG J, ZHANG J G, et al. Atomic resolution structural and chemical imaging revealing the sequential migration of Ni, Co, and Mn upon the battery cycling of layered cathode[J]. Nano Letters, 2017, 17(6) : 3946-3951 [7] CAPRAZ O O, BASSETT K L, GEWIRTH A A, et al. Electrochemical stiffness changes in lithium manganese oxide electrodes[J]. Advanced Energy Materials, 2017, 7(7): doi: 10.1002/aenm.201601778.
[8] NAGESWARAN S, KEPPELER M, KIM S J, et al. Morphology controlled Si-modified LiNi0.5Mn1.5O4 microspheres as high performance high voltage cathode materials in lithium ion batteries[J]. Journal of Power Sources, 2017, 346: 89-96. [9] AMIN R, BELHAROUK I. Part I: Electronic and ionic transport properties of the ordered and disordered LiNi0.5Mn1.5O4 spinel cathode[J]. Journal of Power Sources, 2017, 348: 311-317. [10] CHEN K S, XU R, LUU N S, et al. Comprehensive enhancement of nanostructured lithium-ion battery cathode materials via conformal graphene dispersion[J]. Nano Letters, 2017, 17(4): 2539-2546. [11] GABRIELLI G, MARINARO M, MANCINI M, et al. A new approach for compensating the irreversible capacity loss of high-energy Si/C vertical bar LiNi0.5Mn1.5O4 lithium-ion batteries[J]. Journal of Power Sources, 2017, 351: 35-44. [12] GLASS H F J, LIU Z, BAYLEY P M, et al. MgxMn2–xB2O5 pyroborates (2/3 x 4/3): High capacity and high rate cathodes for Li-ion batteries[J]. Chemistry of Materials, 2017, 29(7): 3118-3125. [13] DONG H, GUO H, HE Y, et al. Structural stability and Li-ion transport property of LiFePO4 under high-pressure[J]. Solid State Ionics, 2017, 301: 133-137. [14] ZHANG Q, LEI H, PAN J, et al. Chemically stable artificial SEI for Li-ion battery electrodes[J]. Applied Physics Letters, 2017, 110: doi: http://dx.doi.org/10.1063/1.4979108. [15] YOON T, MILIEN M S, PARIMALAM B S, et al. Thermal decomposition of the solid electrolyte interphase (SEI) on silicon electrodes for lithium ion batteries[J]. Chemistry of Materials, 2017, 29(7): 3237-3245. [16] AHN S, JEONG M, MIYAMOTO K, et al. Development of areal capacity of Si-O-C composites as anode for lithium secondary batteries using 3D-structured carbon paper as a current collector[J]. Journal of the Electrochemical Society, 2017, 164(2): A355-A359. [17] MA T, YU X, CHENG X, et al. Confined solid electrolyte interphase growth space with solid polymer electrolyte in hollow structured silicon anode for Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9: 13247-13254. [18] SCHOTT T, GOMEZ-CAMER J L, BUNZLI C, et al. The counterintuitive impact of separator-electrolyte combinations on the cycle life of graphite-silicon composite electrodes[J]. Journal of Power Sources, 2017, 343: 142-147. [19] SCHOTT T, GOMEZ-CAMER J L, NOVAK P, et al. Relationship between the properties and cycle life of Si/C composites as performance-enhancing additives to graphite electrodes for Li-ion batteries[J]. Journal of the Electrochemical Society, 2017, 164(2): A190-A203. [20] HANSEN S, QUIROGA-GONZALEZ E, CARSTENSEN J, et al. Size-dependent physicochemical and mechanical interactions in battery paste anodes of Si-microwires revealed by Fast-Fourier- Transform impedance spectroscopy[J]. Journal of Power Sources, 2017, 349: 1-10. [21] PIWKO M, KUNTZE T, WINKLER S, et al. Hierarchical columnar silicon anode structures for high energy density lithium sulfur batteries[J]. Journal of Power Sources, 2017, 351: 183-191. [22] REYES J A, KLOPSCH R, WAGNER R, et al. A step toward high-energy silicon-based thin film lithium ion batteries[J]. ACS Nano, 2017, 345: 190-201. [23] SURESH S, WU Z P, BARTOLUCCI S F, et al. Protecting silicon film anodes in lithium-ion batteries using an atomically thin graphene drape[J]. ACS Nano, 2017, 11(2): 377-384. [24] ASSRESAHEGN B D, BELANGER D. Synthesis of binder-like molecules covalently linked to silicon nanoparticles and application as anode material for lithium-ion batteries without the use of electrolyte additives[J]. Journal of Power Sources, 2017, 345: 190-201. [25] WU H, CAO Y, GENG L, et al. In situ formation of stable interfacial coating for high performance lithium metal anodes[J]. Chemistry of Materials, 2017, 29(8): 3572-3579. [26] QIN P, WANG M, LI N, et al. Bubble-sheet-like interface design with an ultrastable solid electrolyte layer for high-performance dual-ion batteries[J]. Advanced Materials, 2017, 29: doi: 10.1002/adma. 201606805. [27] KITTA M, SANO H. Real-time observation of li deposition on a Li electrode with operand atomic force microscopy and surface mechanical imaging[J]. Langmuir, 2017, 33(8): 1861-1866. [28] KUSHIMA A, SO K P, SU C, et al. Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: Root growth, dead lithium and lithium flotsams[J]. Nano Energy, 2017, 32: 271-279. [29] ZHANG Y, LUO W, WANG C, et al. High-capacity, low-tortuosity, and channel-guided lithium metal anode[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(14): 3584-3589. [30] ISHIKAWA K, ITO Y, HARADA S, et al. Crystal orientation dependence of precipitate structure of electrodeposited Li metal on Cu current collectors[J]. Crystal Growth & Design, 2017, 17(5): 2379-2385. [31] SUN H, MEI L, LIANG J, et al. Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage[J]. Science, 2017, 356(6338): 599-604. [32] TU Z, ZACHMAN M J, CHOUDHURY S, et al. Nanoporous hybrid electrolytes for high-energy batteries based on reactive metal anodes[J]. Advanced Energy Materials, 2017, 7: doi: 10.1002/aenm. 201602367. [33] BAEK S W, HONMA I, KIM J, et al. Solidified inorganic-organic hybrid electrolyte for all solid state flexible lithium battery[J]. Journal of Power Sources, 2017, 343: 22-29. [34] CHEN X, VEREECKEN P M. 100 nm thin-film solid-composite electrolyte for lithium-ion batteries[J]. Advanced Materials Interfaces, 2017, doi: 10.1002/admi.201600877. [35] FU K K, GONG Y, LIU B, et al. Toward garnet electrolyte-based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface[J]. Science Advances, 2017, 3(4): e1601659-e1601659. [36] ZHAI H, XU P, NING M, et al. A flexible solid composite electrolyte with vertically aligned and connected ion-conducting nanoparticles for lithium batteries[J]. Nano Letters, 2017, 17(5): 3182-3187. [37] HAN X, GONG Y, FU K, et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries[J]. Nature Materials, 2017, 16 : 572-579. [38] KAZYAK E, CHEN K H, WOOD K N, et al. Atomic layer deposition of the solid electrolyte garnet Li7La3Zr2O12[J]. Chemistry of Materials, 2017, 29(8): 3785-3792. [39] PEARSE A J, SCHMITT T E, FULLER E J, et al. Nanoscale solid state batteries enabled by thermal atomic layer deposition of a lithium polyphosphazene solid state electrolyte[J]. Chemistry of Materials, 2017, 29(8): 3740-3753. [40] KIM D H, OH D Y, PARK K H, et al. Infiltration of solution-processable solid electrolytes into conventional Li-ion-battery electrodes for all-solid-state Li-ion batteries[J]. Nano Letters, 2017, 17(5): 3013-3020. [41] KWON W J, KIM H, JUNG K N, et al. Enhanced Li+ conduction in perovskite Li3xLa2/3x□1/32xTiO3 solid-electrolytes via microstructural engineering[J]. Journal of Materials Chemistry A, 2017, 5(13): 6257-6262. [42] CHOI Y E, PARK K H, KIM D H, et al. Coatable Li4SnS4 solid electrolytes prepared from aqueous solutions for all-solid-state lithium-ion batteries[J]. ChemSusChem, 2017, 10: 1-8. [43] SANG L, HAASCH R T, GEWIRTH A A, et al. Evolution at the solid electrolyte/gold electrode interface during lithium deposition and stripping[J]. Chemistry of Materials, 2017, 29(7): 3029-3037. [44] GIFFIN G A, MORETTI A, JEONG S, et al. Decoupling effective Li+ ion conductivity from electrolyte viscosity for improved room-temperature cell performance[J]. Journal of Power Sources, 2017, 342: 335-341. [45] LU Q, HE Y B, YU Q, et al. Dendrite-free, high-rate, long-life lithium metal batteries with a 3D cross-linked network polymer electrolyte[J]. Advanced Materials, 2017, 29: doi: 10.1002/adma. 201604460. [46] SUN Y, WANG Y. New insights into the electroreduction of ethylene sulfite as an electrolyte additive for facilitating solid electrolyte interphase formation in lithium ion batteries[J]. Physical Chemistry Chemical Physics, 2017, 19(9): 6861-6870. [47] INAMOTO J I, FUKUTSUKA T, MIYAZAKI K, et al. Investigation of the surface state of LiCoO2 thin-film electrodes using a redox reaction of ferrocene[J]. Journal of the Electrochemical Society, 2017, 164(4): A555-A559. [48] GLAZIER S L, PETIBON R, XIA J, et al. Measuring the parasitic heat flow of lithium ion pouch cells containing EC-free electrolytes[J]. Journal of the Electrochemical Society, 2017, 164(4): A567-A573. [49] AKTEKIN B, YOUNESI R, ZIPPRICH W, et al. The effect of the fluoroethylene carbonate additive in LiNi0.5Mn1.5O4-Li4Ti5O12 lithium-ion cells[J]. Journal of the Electrochemical Society, 2017, 164(4): A942-A948. [50] ZHENG J, ENGELHARD M H, MEI D, et al. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries[J]. Nature Energy, 2017, 2: doi: 10.1038/nenergy.2017.12. [51] WANG H, MATSUI M, KUWATA H, et al. A reversible dendrite-free high-areal-capacity lithium metal electrode[J]. Nature Communications, 2017, 8: doi: 10.1038/ncomms15106. [52] XU C, RENAULT S, EBADI M, et al. LiTDI: A highly efficient additive for electrolyte stabilization in lithium-ion batteries[J]. Chemistry of Materials, 2017, 29(5): 2254-2263. [53] LI J, LIU H, XIA J, et al. The impact of electrolyte additives and upper cut-off voltage on the formation of a rocksalt surface layer in LiNi0.8Mn0.1Co0.1O2 electrodes[J]. Journal of the Electrochemical Society, 2017, 164(4): A655-A665. [54] LUO L, LIU B, SONG S, et al. Revealing the reaction mechanisms of Li-O2 batteries using environmental transmission electron microscopy[J]. Nature Nanotechnology, 2017, 12: 535-539. [55] PAN Y, ZHOU Y, ZHAO Q, et al. Introducing ion-transport- regulating nanochannels to lithium-sulfur batteries[J]. Nano Energy, 2017, 33: 205-212. [56] WU Y, YOKOSHIMA T, NARA H, et al. A pre-lithiation method for sulfur cathode used for future lithium metal free full battery[J]. Journal of Power Sources, 2017, 342: 537-545. [57] GUO J, DU X, ZHANG X, et al. Facile formation of a solid electrolyte interface as a smart blocking layer for high-stability sulfur cathode[J]. Advanced Materials (Deerfield Beach, Fla.), 2017: doi: 10.1002/adma.201700273. [58] LI Y, FU K K, CHEN C, et al. Enabling high-areal-capacity lithium-sulfur batteries: Designing anisotropic and low-tortuosity porous architectures[J]. ACS Nano, 2017, 11: 4801-4807. [59] FUKUTSUKA T, KOKUMAI R, SONG H Y, et al. In situ AFM observation of surface morphology of highly oriented pyrolytic graphite in propylene carbonate- based electrolyte solutions containing lithium and bivalent cations[J]. Journal of the Electrochemical Society, 2017, 164(2): A48-A53. [60] BOULET-ROBLIN L, BOREL P, SHEPTYAKOV D, et al. Operando neutron powder diffraction using cylindrical cell design: The case of LiNi0.5Mn1.5O4 vs. graphite[J]. Journal of Physical Chemistry C, 2016, 120 (31): 17268-17273. [61] JO E, HWANG S, KIM S M, et al. Investigating the kinetic effect on structural evolution of LixNi0.8Co0.15Al0.05O2 cathode materials during the initial charge/discharge[J]. Chemistry of Materials, 2017, 29 (7): 2708-2716. [62] AN S J, LI J, DU Z, et al. Fast formation cycling for lithium ion batteries[J]. Journal of Power Sources, 2017, 342: 846-852. [63] BOERNER M, FRIESEN A, GRUETZKE M, et al. Correlation of aging and thermal stability of commercial 18650-type lithium ion batteries[J]. Journal of Power Sources, 2017, 342: 382-392. [64] YONEMOTO F, NISHIMURA A, MOTOYAMA M, et al. temperature effects on cycling stability of Li plating/stripping on Ta-doped Li7La3Zr2O12[J]. Journal of Power Sources, 2017, 343: 207-215. [65] CHENG J H, ASSEGIE A A, HUANG C J, et al. Visualization of lithium plating and stripping via in operando transmission X-ray microscopy[J]. Journal of Physical Chemistry C, 2017, 121(14): 7761-7766. [66] FAKKAO M, CHIBA K, KIMURA Y, et al. Visualization of the reaction distribution in a composite cathode for an all-solid-state lithium-ion battery[J]. Journal of the Ceramic Society of Japan, 2017, 125(4): 299-302. [67] BESNARD N, ETIEMBLE A, DOUILLARD T, et al. Multiscale morphological and electrical characterization of charge transport limitations to the power performance of positive electrode blends for lithium-ion batteries[J]. Advanced Energy Materials, 2017, 7: doi: 10.1002/aenm.201602239. [68] HARA K, YANO T A, HATA J, et al. Nanoscale optical imaging of lithium-ion distribution on a LiCoO2 cathode surface[J]. Applied Physics Express, 2017, 10: doi: http://doi.org/10.7567/AEX.10.052503. [69] YOON T, MILLEN M S, PARIMALAM B S, et al. Thermal decomposition of the solid electrolyte interphase (SEI) on Silicon electrodes for lithium ion batteries[J]. Chemistry of Materials, 2017, 29(7): 3237-3245. [70] MUTO S, TATSUMI K. Detection of local chemical states of lithium and their spatial mapping by scanning transmission electron microscopy, electron energy-loss spectroscopy and hyperspectral image analysis[J]. Microscopy, 2017, 66(1): 39-49. [71] LU W, ZHANG J, XU J, et al. In-situ visualized cathode electrolyte interphase on LiCoO2 in high voltage cycling[J]. ACS Applied Materials & Interfaces, 2017, 9(22): 19313-19318. [72] JUAREZ-ROBLES D, CHEN C F, BARSUKOV Y, et al. Impedance evolution characteristics in lithium-ion batteries[J]. Journal of the Electrochemical Society, 2017, 164(4): A837-A847 [73] BOHME S, PHILIPPE B, EDSTROM K, et al. Photoelectron spectroscopic evidence for overlapping redox reactions for SnO2 electrodes in lithium-ion batteries[J]. Journal of Physical Chemistry C, 2017, 121(9): 4924-4936.. [74] BULUSHEVA L G, KANYGIN M A, ARKHIPOV V E, et al. In situ X-ray photoelectron spectroscopy study of lithium interaction with graphene and nitrogen-doped graphene films produced by chemical vapor deposition[J]. Journal of Physical Chemistry C, 2017, 121(9): 5108-5114 [75] HU X, FISHER C A J, KOBAYASHI S, et al. Atomic scale imaging of structural changes in solid electrolyte lanthanum lithium niobate upon annealing[J]. Acta Materialia, 2017, 127: 211-219. [76] GONG Y, ZHANG J, JIANG L, et al. In situ atomic-scale observation of electrochemical delithiation induced structure evolution of LiCoO2 cathode in a working all-solid-state battery[J]. Journal of the American Chemical Society, 2017, 139(12): 4274-4277. [77] BASAPPA R H, ITO T, AND YAMADA H. Contact between garnet-type solid electrolyte and lithium metal anode: Influence on charge transfer resistance and short circuit prevention[J]. Journal of the Electrochemical Society, 2017, 164(4): A666-A671. [78] ILIKSU M, KHETAN A, YANG S, et al. Elucidation and comparison of the effect of LiTFSI and LiNO3 salts on discharge chemistry in nonaqueous Li-O2 batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(22): 19319-19325. [79] KOBAYASHI T, KOBAYASHI Y, MIYASHIRO H. Lithium migration between blended cathodes of a lithium-ion battery[J]. Journal of Materials Chemistry A, 2017, 5(18): 8653-8661. [80] HIRAYAMA T, AIZAWA Y, YAMAMOTO K, et al. Advanced electron holography techniques for in situ observation of solid-state lithium ion conductors[J]. Ultramicroscopy, 2017, 173: 64-70. [81] FRISCO S, LIU D, KUMAR A, et al. Internal morphologies of cycled Li-metal electrodes investigated by nano-scale resolution X-Ray computed tomography[J]. ACS Applied Materials & Interfaces, 2017, 9(22):18748-18757. [82] MALIFARGE S, DELOBEL B, DELACOURT C. Quantification of preferred orientation in graphite electrodes for Li-ion batteries with a novel X-ray-diffraction-based method[J]. Journal of Power Sources, 2017, 343: 338-344. [83] VADIVEL N R, HA S, HE M, et al. On leakage current measured at high cell voltages in lithium-ion batteries[J]. Journal of the Electrochemical Society, 2017, 164(2): A508-A517. [84] ZHANG Y, GE H, HUANG J, et al. A comparative degradation study of commercial lithium-ion cells under low-temperature cycling[J]. RSC Advances, 2017, 7(37): 23157-23163. [85] DESHPANDE R D, BERNARDI D M. Modeling solid-electrolyte interphase (SEI) fracture: Coupled mechanical/chemical degradation of the lithium ion battery[J]. Journal of the Electrochemical Society, 2017, 164(2): A461-A474. [86] MAO Z, FARKHONDEH M, PRITZKER M, et al. Charge/discharge asymmetry in blended lithium-ion electrodes[J]. Journal of the Electrochemical Society, 2017, 164(2): A39-A47. [87] FEDOTOV S S, KABANOV A A, KABANOVA N A, et al. Crystal structure and Li-ion transport in Li2CoPO4F high-voltage cathode material for Li-ion batteries[J]. Journal of Physical Chemistry C, 2017, 121(6): 3194-3202. [88] KOYAMA Y, UYAMA T, ORIKASA Y, et al. Hidden two-step phase transition and competing reaction pathways in LiFePO4[J]. Chemistry of Materials, 2017, 29(7): 2855-2863. [89] KIM S, CHOI S, LEE K, et al. Self-assembly of core-shell structures driven by low doping limit of Ti in LiCoO2: First-principles thermodynamic and experimental investigation[J]. Physical Chemistry Chemical Physics, 2017, 19(5): 4104-4113. [90] EBADI M, COSTA L T, ARAUJO C M, et al. Modelling the polymer electrolyte/Li-metal interface by molecular dynamics simulations[J]. Electrochimica Acta, 2017, 234: 43-51. [91] LEUNG K. First-principles modeling of Mn(II) migration above and dissolution from LixMn2O4 (001) surfaces[J]. Chemistry of Materials, 2017, 29(6): 2550-2562. [92] LI S, LIU J, LIU B. First-principles study of the charge transport mechanisms in lithium superoxide[J]. Chemistry of Materials, 2017, 29(5): 2202-2210. [93] MIN K, SEO S W, SONG Y Y, et al. A first-principles study of the preventive effects of Al and Mg doping on the degradation in LiNi0.8Co0.1Mn0.1O2 cathode materials[J]. Physical Chemistry Chemical Physics, 2017, 19(3): 1762-1769. [94] BURKHARDT S E. Impact of chemical follow-up reactions for lithium ion electrolytes: Generation of nucleophilic species, solid electrolyte interphase, and gas formation[J]. Journal of the Electrochemical Society, 2017, 164(4): A684-A690. [95] THAI K, LEE E. Effects of mechanical strain on ionic conductivity in the interface between LiPON and Ni-Mn spinel[J]. Journal of the Electrochemical Society, 2017, 164(4): A594-A599. [96] RAJ R, WOLFENSTINE J. Current limit diagrams for dendrite formation in solid-state electrolytes for Li-ion batteries[J]. Journal of Power Sources, 2017, 343: 119-126. [97] KUPPER C, BESSLER W G. Multi-scale thermo-electrochemical modeling of performance and aging of a LiFePO4/graphite lithium-ion cell[J]. Journal of the Electrochemical Society, 2016, 164(2): A304-A320. [98] HAN S. A salient effect of density on the dynamics of nonaqueous electrolytes[J]. Scientific Reports, 2017, 7: doi: 10.1038/srep46718. [99] OKUMURA T, YAMAGUCHI Y, KOBAYASHI H. X-ray absorption near-edge structures of LiMn2O4 and LiNi0.5Mn1.5O4 spinet oxides for lithium-ion batteries: The first-principles calculation study[J]. Physical Chemistry Chemical Physics, 2016, 18(27): 17827-17830. [100] SHARIFI-ASL S, SOTO F A, NIE A, et al. Facet-dependent thermal instability in LiCoO2[J]. Nano Letters, 2017, 17(4): 2165-2171. |
[1] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[2] | Yingwei PEI, Hong ZHANG, Xinghui WANG. Recent advances in the electrolytes of rechargeable zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2075-2082. |
[3] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[4] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[5] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[6] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
[7] | LI Yitao, SHEN Kaier, PANG Quanquan. Advance in organics enhanced sulfide-based solid-state batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1902-1918. |
[8] | ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. |
[9] | ZHANG Yan, WANG Hai, LIU Zhaomeng, ZHANG Deliu, WANG Jiadong, LI Jianzhong, GAO Xuanwen, LUO Wenbin. Research progress of nickel-rich ternary cathode material ncm for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1693-1705. |
[10] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
[11] | Honghui WANG, Zeqin WU, Deren CHU. Thermal behavior of lithium titanate based Li ion batteries under slight over-discharging condition [J]. Energy Storage Science and Technology, 2022, 11(5): 1305-1313. |
[12] | Zhicheng CHEN, Zongxu LI, Ling CAI, Yisi LIU. Development status and future prospects of flexible metal-air batteries [J]. Energy Storage Science and Technology, 2022, 11(5): 1401-1410. |
[13] | Maolin FANG, Ying ZHANG, Lin QIAO, Shumin LIU, Zhongqi CAO, Huamin ZHANG, Xiangkun MA. Research progress of iron-chromium flow batteries technology [J]. Energy Storage Science and Technology, 2022, 11(5): 1358-1367. |
[14] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[15] | Ying TAO, Lingfei ZHAO, Yunxiao WANG, Yuliang CAO, Shulei CHOU. Stabilization of sodium metal anodes by dual-salt high concentration electrolyte [J]. Energy Storage Science and Technology, 2022, 11(4): 1103-1109. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||