Energy Storage Science and Technology ›› 2018, Vol. 7 ›› Issue (3): 437-449.doi: 10.12028/j.issn.2095-4239.2018.0063
Previous Articles Next Articles
CAO Wenzhuo1,2, WANG Junyang1,2, CHEN Rusong1,2, SUO Liumin1,2, LI Hong1,2
Received:
2018-04-01
Revised:
2018-04-13
Online:
2018-05-01
Published:
2018-04-24
CLC Number:
CAO Wenzhuo, WANG Junyang, CHEN Rusong, SUO Liumin, LI Hong. Thermodynamic calculation on energy densities of multi-electron transfer Mg/Al batteries[J]. Energy Storage Science and Technology, 2018, 7(3): 437-449.
[1] WU CHUAN B Y, WU FENG, et al. Novel ternary metal boride Mg-Co-B alloys as anode materials for alkaline secondary batteries[J]. Electrochemistry Communications, 2009, 11(11):2173-2176. [2] 罗锐, 黄永鑫, 陈人杰, 吴锋. 基于多电子反应机制的高比能二次电池[C]//第三届全国储能科学与技术大会, 2016. LUO Rui, HUANG Yongxin, CHEN Renjie, WU Feng. Secondary battery with high specific energy based on multi-electron reaction mechanism[C]//Proceedings of the Third National Conference on Energy, 2016. [3] 李泓, 许晓雄. 固态锂电池研发愿景和策略[J]. 储能科学与技术, 2016, 5(5):607-614. LI Hong, XU Xiaoxiong. R&D vision and strategies on lithium batteries[J]. Energy Storage Science and Technology, 2016, 5(5):607-614. [4] AURBACH D, LU Z, SCHECHTER A, et al. Prototype systems for rechargeable magnesium batteries[J]. Nature, 2000, 407(6805):724-727. [5] RANKIN W J. Minerals, metals and sustainability:Meeting future material needs[M]//PRESS C. Boca Raton, Fla. 2011. [6] B SAHOO N C, A SAMANTARAY, P KUMAR. Inorganic chemistry[M]. PHI Learning, 2012. [7] HARRIS J. Nature's building blocks:an A-Z guide to the elements[J]. Interdisciplinary Science Reviews, 2002, 27(1):79-80. [8] 郑育培, 努丽燕娜, 杨军, 陈强, 王久林. 可充镁电池正极材料研究进展[J]. 化工进展, 2011, 30(5):1024-1032. ZHENG Yupei, NULI Yanna, YANG Jun, et al. Research progress of cathode materials for rechargeable magnesium batteries[J]. Chemical Industry and Engineering Progress, 2011, 30(5):1024-1032. [9] 马正青, 左列, 庞旭, 曾苏民. 铝电池研究进展[J]. 船电技术, 2008, 28(5):257-261. MA Zhengqing, ZUO Lie, PANG Xu, et al. Advance in Aluminum Batteries[J]. Ship Electricity Technology, 2008, 28(5):257-261. [10] NOVAK P, DESILVESTRO J. Electrochemical insertion of magnesium in metal oxides and sulfides from aprotic electrolytes[J]. J. Electrochem. Soc., 1993, 140(1):140-144. [11] BRUCE P G, KROK F, NOWINSKI J, et al. Chemical intercalation of magnesium into solid hosts[J]. J. Mater. Chem., 1991, 1(4):705-706. [12] KUMAGAI N, KOMABA S, SAKAI H, et al. Preparation of todorokite-type manganese-based oxide and its application as lithium and magnesium rechargeable battery cathode[J]. Journal of Power Sources, 2001, 97/98:515-517. [13] GREGORY T D, HOFFMAN R J, WINTERTON R C. Nonaqueous electrochemistry of magnesium-applications to energy-storage[J]. J. Electrochem. Soc., 1990, 137(3):775-780. [14] LI X L, LI Y D. MoS2 nanostructures:Synthesis and electrochemical Mg2+ intercalation[J]. J. Phys. Chem. B, 2004, 108(37):13893-13900. [15] MAKINO K, KATAYAMA Y, MIURA T, et al. Electrochemical insertion of magnesium to Mg0.5Ti2(PO4)3[J]. Journal of Power Sources, 2001, 99(1-2):66-69. [16] FENG Z, YANG J, NULI Y, et al. Sol-gel synthesis of Mg1.03Mn0.97SiO4 and its electrochemical intercalation behavior[J]. Journal of Power Sources, 2008, 184(2):604-609. [17] WANG R Y, WESSELLS C D, HUGGINS R A, et al. Highly reversible open framework nanoscale electrodes for divalent ion batteries[J]. Nano Letters, 2013, 13(11):5748-5752. [18] NULI Y, GUO Z, LIU H, et al. A new class of cathode materials for rechargeable magnesium batteries:Organosulfur compounds based on sulfur-sulfur bonds[J]. Electrochemistry Communications, 2007, 9(8):1913-1917. [19] GIRAUDET J, CLAVES D, GUERIN K, et al. Magnesium batteries:Towards a first use of graphite fluorides[J]. Journal of Power Sources, 2007, 173(1):592-598. [20] REED L D, MENKE E. The roles of V2O5 and stainless steel in rechargeable Al-ion batteries[J]. J. Electrochem. Soc., 2013, 160(6):A915-A917. [21] KULISH V V, MANZHOS, S. Comparison of Li, Na, Mg and Al-ion insertion in vanadium pentoxides and vanadium dioxides[J]. RSC Adv., 2017, 7(30):18643-18649. [22] LIU S, HU J J, YAN N F, et al. Aluminum storage behavior of anatase TiO2 nanotube arrays in aqueous solution for aluminum ion batteries[J]. Energy & Environmental Science, 2012, 5(12):9743-9746. [23] JURAN T R, SMEU M. Hybrid density functional theory modeling of Ca, Zn, and Al ion batteries using the Chevrel phase Mo6S8 cathode[J]. Phys. Chem. Chem. Phys., 2017, 19(31):20684-20690. [24] MORI T, ORIKASA Y, NAKANISHI K, et al. Discharge/charge reaction mechanisms of FeS2 cathode material for aluminum rechargeable batteries at 55 degrees C[J]. Journal of Power Sources, 2016, 313:9-14. [25] PHILLIPS J, GIBBARD H F. Thermodynamics of Li(Al)-FeS battery system[J]. J. Electrochem. Soc., 1978, 125(8):C369. [26] LIU S, PAN G L, LI G R, et al. Copper hexacyanoferrate nanoparticles as cathode material for aqueous Al-ion batteries[J]. J. Mater. Chem. A, 2015, 3(3):959-962. [27] XU J T, DOU Y H, WEI Z X, et al. Recent progress in graphite intercalation compounds for rechargeable metal (Li, Na, K, Al)-ion batteries[J]. Adv. Sci., 2017, 4(10):14. [28] RANI J V, KANAKAIAH V, DADMAL T, et al. Fluorinated natural graphite cathode for rechargeable ionic liquid based aluminum-ion battery[J]. J. Electrochem. Soc., 2013, 160(10):A1781-A1784. [29] HUDAK N S. Chloroaluminate-doped conducting polymers as positive electrodes in rechargeable aluminum batteries[J]. J. Phys. Chem. C, 2014, 118(10):5203-5215. [30] DONAHUE F M, MANCINI S E, SIMONSEN L. Secondary aluminum iron(Ⅲ) chloride batteries with a low-temperature molten-salt electrolyte[J]. J. Appl. Electrochem., 1992, 22(3):230-234. [31] SUTO K, NAKATA A, MURAYAMA H, et al. Electrochemical properties of al/vanadium chloride batteries with AlCl3-1-ethyl-3-methylimidazolium chloride electrolyte[J]. J. Electrochem. Soc., 2016, 163(5):A742-A747. [32] BRABSON G D, FANNIN A A, KING L A, et al. Prototype high-power density aluminum-chlorine battery[J]. J. Electrochem. Soc., 1973, 120(3):C85. [33] GAO T, LI X G, WANG X W, et al. A rechargeable Al/S battery with an ionic-liquid electrolyte[J]. Angewandte Chemie-International Edition, 2016, 55(34):9898-9901. [34] ZU Chenxi, LI H. Thermodynamics analysis on energy densities of batteries[J]. Energy & Environmental Science, 2011, 4(8):2614-2624. [35] HAYNES W M. CRC handbook of chemistry and physics,97th edition[M]. Boca Raton:CRC Press, 2016-2017. [36] JAMES G SPEIGHT. Lange's handbook of chemistry,16th edition[M]. New York:McGraw Hill, 2005. [37] BARIN I. Thermochemical date of pure substances, 3rd edition[M]. New York:VCH publisher, 1995. [38] National Institute of Standards and Technology (NIST)-JANAF Thermochemical Tables[DB/OL]. https://janaf.nist.gov/ [39] SMITH J G, NARUSE J, HIRAMATSU H, et al. Theoretical limiting potentials in Mg/O2 batteries[J]. Chemistry of Materials, 2016, 28(5):1390-1401. [40] IMAMURA D, MIYAYAMA M. Characterization of magnesium-intercalated V2O5/carbon composites[J]. Solid State Ionics, 2003, 161(1-2):173-180. [41] 司玉昌, 孙文军, 王贺孔, 邓昌辉, 牟心红, 焦丽芳, 袁华堂. MoO3纳米材料的合成及电化学嵌镁性能研究[J]. 南开大学学报(自然科学版), 2010, 43(6):5-8. SI Yuchang, SUN Wenjun, WANG Hekong, et al. Synthesis and Electrochemical insertion of magnesium in MoO3 nanomaterials[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis(Natural Science Edition), 2010, 43(6):5-8. [42] ARTHUR T S, ZHANG R G, LING C, et al. Understanding the electrochemical mechanism of K-alpha MnO2 for magnesium battery cathodes[J]. ACS Appl. Mater. Interfaces, 2014, 6(10):7004-7008. [43] WANG L, ASHEIM K, VULLUM P E, et al. Sponge-like porous manganese(Ⅱ,Ⅲ) oxide as a highly efficient cathode material for rechargeable magnesium ion batteries[J]. Chemistry of Materials, 2016, 28(18):6459-6470. [44] SUTTO T E, DUNCAN T T. Electrochemical and structural characterization of Mg ion intercalation into Co3O4 using ionic liquid electrolytes[J]. Electrochim Acta, 2012, 80:413-417. [45] LIU Y C, JIAO L F, WU Q, et al. Synthesis of rGO-supported layered MoS2 for high-performance rechargeable Mg batteries[J]. Nanoscale, 2013, 5(20):9562-9567. [46] JAYAPRAKASH N, DAS S K, ARCHER L A. The rechargeable aluminum-ion battery[J]. Chem. Commun., 2011, 47(47):12610-12612. [47] DAS S K, MAHAPATRA S, LAHAN H. Aluminium-ion batteries:Developments and challenges[J]. J. Mater. Chem. A, 2017, 5(14):6347-6367. [48] LIU Y, SANG S, WU Q, et al. The electrochemical behavior of Cl- assisted Al3+ insertion into titanium dioxide nanotube arrays in aqueous solution for aluminum ion batteries[J]. Electrochim Acta, 2014, 143:340-346. |
[1] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[2] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[3] | ZHANG Yan, WANG Hai, LIU Zhaomeng, ZHANG Deliu, WANG Jiadong, LI Jianzhong, GAO Xuanwen, LUO Wenbin. Research progress of nickel-rich ternary cathode material ncm for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1693-1705. |
[4] | HAN Junwei, XIAO Jing, TAO Ying, KONG Debin, LV Wei, YANG Quanhong. Compact energy storage: Methodology with graphenes and the applications [J]. Energy Storage Science and Technology, 2022, 11(6): 1865-1873. |
[5] | ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. |
[6] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[7] | Zhicheng CHEN, Zongxu LI, Ling CAI, Yisi LIU. Development status and future prospects of flexible metal-air batteries [J]. Energy Storage Science and Technology, 2022, 11(5): 1401-1410. |
[8] | Liang FANG, Kai ZHANG, Limin ZHOU. Recent advances and prospects of electrolyte for aluminum ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1236-1245. |
[9] | Chang SUN, Zerong DENG, Ningbo JIANG, Lulu ZHANG, Hui FANG, Xuelin YANG. Recent research progress of sodium vanadium fluorophosphate as cathode material for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1184-1200. |
[10] | Haiyan HU, Shulei CHOU, Yao XIAO. Layered oxide cathode materials based on molecular orbital hybridization for high voltage sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1093-1102. |
[11] | Chunlin YU, Xudong CHEN, Toshio MIYAGAWA, Hui SUN, Xingwang ZHANG, Lige TONG. Precursor with special structure for improving the performance of the ternary cathode material of Li-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 1000-1007. |
[12] | Guanjun CEN, Jing ZHU, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Mengyu TIAN, Feng TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Dec. 1, 2021 to Jan. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(3): 1077-1092. |
[13] | Suting WENG, Zepeng LIU, Gaojing YANG, Simeng ZHANG, Xiao ZHANG, Qiu FANG, Yejing LI, Zhaoxiang WANG, Xuefeng WANG, Liquan CHEN. Cryogenic electron microscopy (cryo-EM) characterizing beam-sensitive materials in lithium metal batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 760-780. |
[14] | Zhongmin REN, Bin WANG, Shuaishuai CHEN, Hua LI, Zhenlian CHEN, Deyu WANG. Mechanics-induced degradation on layer-structured cathodes and remedies to address it [J]. Energy Storage Science and Technology, 2022, 11(3): 948-956. |
[15] | Miao WU, Guiqing ZHAO, Zhongzhu QIU, Baofeng WANG. Preparation and electrochemical properties of NiCo2O4 as a novel cathode material for aqueous zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 1019-1025. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||