Energy Storage Science and Technology ›› 2018, Vol. 7 ›› Issue (5): 869-880.doi: 10.12028/j.issn.2095-4239.2018.0152
Previous Articles Next Articles
ZHAN Yuanjie, WU Yida, ZHAO Junnian, JIN Zhou, ZHANG Hua, QI Wenbin, TIAN Feng, BEN Liubin, YU Hailong, LIU Yanyan, HUANG Xuejie
Received:
2018-08-16
Online:
2018-09-01
Published:
2018-09-01
Contact:
10.12028/j.issn.2095-4239.2018.0152
CLC Number:
ZHAN Yuanjie, WU Yida, ZHAO Junnian, JIN Zhou, ZHANG Hua, QI Wenbin, TIAN Feng, BEN Liubin, YU Hailong, LIU Yanyan, HUANG Xuejie. Reviews of selected 100 recent papers for lithium batteries (Jun. 1, 2018 to Jul. 31, 2018)[J]. Energy Storage Science and Technology, 2018, 7(5): 869-880.
[1] HE T, LU Y, SU Y F, et al. Sufficient utilization of zirconium ions to improve the structure and surface properties of nickel-rich cathode materials for lithium-ion batteries[J]. ChemSusChem, 2018, 11(10):1639-1648. [2] ZHAO Q, QIN X L, ZHAO H B, et al. A novel prediction method based on the support vector regression for the remaining useful life of lithium-ion batteries[J]. Microelectronics Reliability, 2018, 85:99-108. [3] LIANG J Y, ZENG X X, ZHANG X D, et al. Mitigating interfacial potential drop of cathode-solid electrolyte via ionic conductor layer to enhance interface dynamics for solid batteries[J]. Journal of the American Chemical Society, 2018, 140(22):6767-6770. [4] LI W D, LIU X M, CELIO H, et al. Mn versus Al in layered oxide cathodes in lithium-ion batteries:A comprehensive evaluation on long-term cyclability[J]. Advanced Energy Materials, 2008, 8(15):doi:10.1002/aenm.201703154. [5] YOU Y, CELIO H, LI J Y, et al. Modified high-nickel cathodes with stable surface chemistry against ambient air for lithium-ion batteries[J]. Angewandte Chemie-International Edition, 2018, 57(22):6480-6485. [6] CAMBAZ M A, VINAYAN B P, EUCHNER H, et al. Design of nickel-based cation-disordered rock-salt oxides:The effect of transition metal (M=V, Ti, Zr) substitution in LiNi0.5M0.5O2 binary systems[J]. ACS Applied Materials & Interfaces, 2018, 10(26):21957-21964. [7] ZHANG X D, SHI J L, LIANG J Y, et al. Suppressing surface lacttice oxygen release of Li-rich cathode materials via heterostructure spinel Li4Mn5O12 coating[J]. Advanced Materials, 2018, 30(29):doi:10.1002/adma.201801751. [8] BI K, ZHAO S X, HUANG C, et al. Improving low-temperature performance of spinel LiNi0.5Mn1.5O4 electrode and LiNi0.5Mn1.5O4/Li4Ti5O12 full-cell by coating solid-state electrolyte for Li-Al-Ti-P-O[J]. Journal of Power Sources, 2018, 389:240-248. [9] FENG S P, KONG X, SUN H Y, et al. Effect of Zr doping on LiNi0.5Mn1.5O4 with ordered or disordered structures[J]. Journal of Alloys and Compounds, 2018, 749:1009-1018. [10] BINI M, BONI P, MUSTARELLI P, et al. Silicon-doped LiNi0.5Mn1.5O4 as a high-voltage cathode for Li-ion batteries[J]. Solid State Ionics, 2018, 320:1-6. [11] DENG M M, TANG Z F, SHAO Y, et al. Enhancing the electrochemical performances of LiNi0.5Mn1.5O4 by Co3O4 surface coating[J]. Journal of Alloys and Compounds, 2018, 762:163-170. [12] CHAE S, SOON J, JEONG H, et al. Passivating film artificially built on LiNi0.5Mn1.5O4 by molecular layer deposition of (pentafluorophenylpropyl)trimethoxysilane[J]. Journal of Power Sources, 2018, 392:159-167. [13] XIANG K, YANG K Q, CARTER W C, et al. Mesoscopic phase transition kinetics in secondary particles of electrode-active materials in lithium-ion batteries[J]. Chemistry of Materials, 2018, 30(13):4216-4225. [14] FAN X L, HU E Y, JI X, et al. High energy-density and reversibility of iron fluoride cathode enabled via an intercalation-extrusion reaction[J]. Nature Communications, 2018, 9:doi:https://doi.org/10.1038/s41467-018-04476-2. [15] GAO P, CHEN Z, ZHAO-KARGER Z, et al. A porphyrin complex as a self-conditioned electrode material for high-performance energy storage[J]. Angewandte Chemie-International Edition, 2017, 56(35):10341-10346. [16] GORDON D, HUANG Q, MAGASINSKI A, et al. Mixed metal difluorides as high capacity conversion-type cathodes:Impact of composition on stability and performance[J]. Advanced Energy Materials, 2018, 8(19):doi:10.1002/aemn.201800213. [17] MENG Z, TIAN H J, ZHANG S L, et al. Polyiodide-shuttle restricting polymer cathode for rechargeable lithium/iodine battery with ultralong cycle life[J]. ACS Applied Materials & Interfaces, 2018, 10(21):17933-17941. [18] BHARGAV A, BELL M E, KARTY J, et al. A class of organopolysulfides as liquid cathode materials for high energy-density lithium batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(25):21084-21090. [19] CAI F S, DUAN Y Q, YUAN Z H. Iodine/beta-cyclodextrin composite cathode for rechargeable lithium-iodine batteries[J]. Journal of Materials Science-Materials in Electronics, 2018, 29(13):11540-11545. [20] XU Q, SUN J K, YU Z L, et al. SiOx Encapsulated in graphene bubble film:An ultrastable Li-ion battery anode[J]. Advanced Materials, 2018, 30(25):doi:10.1002/adma.201707430. [21] HAN B, YANG Y, SHI X B, et al. Spontaneous repairing liquid metal/Si nanocomposite as a smart conductive-additive-free anode for lithium-ion battery[J]. Nano Energy, 2018, 50:359-366. [22] HATCHARD T D, FIELDEN R A, OBROVAC M N. Sintered polymeric binders for Li-ion battery alloy anodes[J]. Canadian Journal of Chemistry, 2018, 96(7):765-770. [23] HE T, FENG J R, ZHANG Y, et al. Stress-relieved nanowires by silicon substitution for high-capacity and stable lithium storage[J]. Advanced Energy Materials, 2018, 8(14):doi:10.1002/aemn.201702805. [24] KIM S, JEONG Y K, WANG Y, et al. A "Sticky" mucin-inspired DNA-polysaccharide binder for silicon and silicon-graphite blended anodes in lithium-ion batteries[J]. Advanced Materials, 2018, 30(26):doi:10.1002/adma.201707594. [25] KIM S H, LEE D H, PARK C, et al. Nanocrystalline silicon embedded in an alloy matrix as an anode material for high energy density lithium-ion batteries[J]. Journal of Power Sources, 2018, 395:328-335. [26] LIU J J, YANG Y, LYU P B, et al. Few-layer silicene nanosheets with superior lithium-storage properties[J]. Advanced Materials, 2018, 30(26):doi:10.1002/adma.201800838. [27] BERTOLINI S, BALBUENA P B. Buildup of the solid electrolyte interphase on lithium-metal anodes:Reactive molecular dynamics study[J]. Journal of Physical Chemistry C, 2018, 122(20):10783-10791. [28] SHI Q W, ZHONG Y R, WU M, et al. High-capacity rechargeable batteries based on deeply cyclable lithium metal anodes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(22):5676-5680. [29] DENG W, ZHOU X F, FANG Q L, et al. Microscale lithium metal stored inside cellular graphene scaffold toward advanced metallic lithium anodes[J]. Advanced Energy Materials, 2018, 8(12):doi:10.1002/aemn.201703152. [30] ZOLLER F, PETERS K, ZEHETMAIER P M, et al. Making ultrafast high-capacity anodes for lithium-ion batteries via antimony doping of nanosized tin oxide/graphene composites[J]. Advanced Functional Materials, 2018, 28(23):doi:10.1002/adfm.201706529. [31] HAN F D, YUE J, ZHU X Y, et al. Suppressing Li dendrite formation in Li2S-P2S5 solid electrolyte by LiI incorporation[J]. Advanced Energy Materials, 2018, 8(18):doi:10.1002/aenm.201703644. [32] DENG W, ZHU W H, ZHOU X F, et al. Highly reversible Li plating confined in three-dimensional interconnected microchannels toward high-rate and stable metallic lithium anodes[J]. ACS Applied Materials & Interfaces, 2018, 10(24):20387-20395. [33] XU S M, MCOWEN D W, WANG C W, et al. Three-dimensional, solid-state mixed electron-ion conductive framework for lithium metal anode[J]. Nano Letters, 2018, 18(6):3926-3933. [34] ZHAO H, LEI D N, HE Y B, et al. Compact 3D copper with uniform porous structure derived by electrochemical dealloying as dendrite-free lithium metal anode current collector[J]. Advanced Energy Materials, 2018, 8(19):doi:10.1002/aemn.201800266. [35] BAI M H, XIE K Y, YUAN K, et al. A scalable approach to dendrite-free lithium anodes via spontaneous reduction of spray-coated graphene oxide layers[J]. Advanced Materials, 2018, 30(29):doi:10.1002/adma.201801213. [36] CHOUDHURY S, VU D, WARREN A, et al. Confining electrodeposition of metals in structured electrolytes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(26):6620-6625. [37] WEN K H, WANG Y L, CHEN S M, et al. Solid-liquid electrolyte as a nanoion modulator for dendrite-free lithium anodes[J]. ACS Applied Materials & Interfaces, 2018, 10(24):20412-20421. [38] ZHANG Y, WANG C W, PASTEL G, et al. 3D wettable framework for dendrite-free alkali metal anodes[J]. Advanced Energy Materials, 2018, 8(18):doi:10.1002/aemn.201800635. [39] LI Y T, CHEN X, DOLOCAN A, et al. Garnet electrolyte with an ultralow interfacial resistance for Li-metal batteries[J]. Journal of the American Chemical Society, 2018, 140(20):6448-6455. [40] DONG T T, ZHANG J J, XU G J, et al. A multifunctional polymer electrolyte enables ultra-long cycle-life in a high-voltage lithium metal battery[J]. Energy & Environmental Science, 2018, 11(5):1197-1203. [41] YOON K, KIM J J, SEONG W M, et al. Investigation on the interface between Li10GeP2S12 electrolyte and carbon conductive agents in all-solid-state lithium battery[J]. Scientific Reports, 2018, 8:doi:10.1038/S41598-018-26101-4. [42] GARBAYO I, STRUZIK M, BOWMAN W J, et al. Glass-type polyamorphism in Li-garnet thin film solid state battery conductors[J]. Advanced Energy Materials, 2018, 8(12):doi:10.1002/aemn.201702265. [43] SHAO Y J, WANG H C, GONG Z L, et al. Drawing a soft interface:An effective interfacial modification strategy for garnet type solid-state Li batteries[J]. ACS Energy Letters, 2018, 3(6):1212-1218. [44] HAO S M, ZHANG H, YAO W, et al. Solid-state lithium battery chemistries achieving high cycle performance at room temperature by a new garnet-based composite electrolyte[J]. Journal of Power Sources, 2018, 393:128-134. [45] NOH S, NICHOLS W T, CHO M, et al. Importance of mixing protocol for enhanced performance of composite cathodes in all-solid-state batteries using sulfide solid electrolyte[J]. Journal of Electroceramics, 2018, 40(4):293-299. [46] LI Y T, XU H H, CHIEN P H, et al. A perovskite electrolyte that is stable in moist air for lithium-ion batteries[J]. Angewandte Chemie-International Edition, 2018, 57(28):8587-8591. [47] HE M H, CUI Z H, CHEN C, et al. Formation of self-limited, stable and conductive interfaces between garnet electrolytes and lithium anodes for reversible lithium cycling in solid-state batteries[J]. Journal of Materials Chemistry A, 2018, 6(24):11463-11470. [48] KATAOKA K, NAGATA H, AKIMOTO J. Lithium-ion conducting oxide single crystal as solid electrolyte for advanced lithium battery application[J]. Scientific Reports, 2018, 8:doi:10.1038/s41598-018-2785-x. [49] LIU Y J, LI C, LI B J, et al. Germanium thin film protected lithium aluminum germanium phosphate for solid-state Li batteries[J]. Advanced Energy Materials, 2018, 8(16):doi:10.1002/aemn.201702374. [50] CULVER S P, KOERVER R, KRAUSKOPF T, et al. Designing ionic conductors:The interplay between structural phenomena and interfaces in thiophosphate-based solid-state batteries[J]. Chemistry of Materials, 2018, 30(13):4179-4192. [51] MEESALA Y, CHEN C Y, JENA A, et al. All-solid-state Li-ion battery using Li1.5Al0.5Ge1.5(PO4)3 as electrolyte without polymer interfacial adhesion[J]. Journal of Physical Chemistry C, 2018, 122(26):14383-14389. [52] WANG C W, ZHANG L, XIE H, et al. Mixed ionic-electronic conductor enabled effective cathode-electrolyte interface in all solid state batteries[J]. Nano Energy, 2018, 50:393-400. [53] WEI Z Y, CHEN S J, WANG J Y, et al. A large-size, bipolar-stacked and high-safety solid-state lithium battery with integrated electrolyte and cathode[J]. Journal of Power Sources, 2018, 394:57-66. [54] ALVARADO J, SCHROEDER M A, ZHANG M H, et al. A carbonate-free, sulfone-based electrolyte for high-voltage Li-ion batteries[J]. Materials Today, 2018, 21(4):341-353. [55] CHANG Z H, WANG J T, WU Z H, et al. The electrochemical performance of silicon nanoparticles in concentrated electrolyte[J]. ChemSusChem, 2018, 11(11):1787-1796. [56] HAN J G, BIN LEE J, CHA A, et al. Unsymmetrical fluorinated malonatoborate as an amphoteric additive for high-energy-density lithium-ion batteries[J]. Energy & Environmental Science, 2018, 11(6):1552-1562. [57] PARK S J, HWANG J Y, YOON C S, et al. Stabilization of lithium-metal batteries based on the in situ formation of a stable solid electrolyte interphase layer[J]. ACS Applied Materials & Interfaces, 2018, 10(21):17985-17993. [58] LIAO B, HU X L, XU M Q, et al. Constructing unique cathode interface by manipulating functional groups of electrolyte additive for graphite/LiNi0.6Co0.2Mn0.2O2 cells at high voltage[J]. Journal of Physical Chemistry Letters, 2018, 9(12):3434-3445. [59] ZHANG T, PORCHER W, PAILLARD E. Towards practical sulfolane based electrolytes:Choice of Li salt for graphite electrode operation[J]. Journal of Power Sources, 2018, 395:212-220. [60] ZHAO W G, ZHENG J M, ZOU L F, et al. High voltage operation of Ni-rich NMC cathodes enabled by stable electrode/electrolyte interphases[J]. Advanced Energy Materials, 2018, 8(19):doi:10.1002/aemn.201800297. [61] GOCKELN M, GLENNEBERG J, BUSSE M, et al. Flame aerosol deposited Li4Ti5O12 layers for flexible, thin film all-solid-state Li-ion batteries[J]. Nano Energy, 2018, 49:564-573. [62] IRIYAMA Y, WADAGUCHI M, YOSHIDA K, et al. 5 V-class bulk-type all-solid-state rechargeable lithium batteries with electrode-solid electrolyte composite electrodes prepared by aerosol deposition[J]. Journal of Power Sources, 2018, 385:55-61. [63] ZHOU X Y, CHEN S, ZHOU H C, et al. Enhanced lithium ion battery performance of nano/micro-size Si via combination of metal-assisted chemical etching method and ball-milling[J]. Microporous and Mesoporous Materials, 2018, 268:9-15. [64] BALOGUN M S, YANG H, LUO Y, et al. Achieving high gravimetric energy density for flexible lithium-ion batteries facilitated by core-double-shell electrodes[J]. Energy & Environmental Science, 2018, 11(7):1859-1869. [65] LUO C, JI X, CHEN J, et al. Solid-state electrolyte anchored with a carboxylated azo compound for all-solid-state lithium batteries[J]. Angewandte Chemie-International Edition, 2018, 57(28):8567-8571. [66] WU B B, WANG S Y, LOCHALA J, et al. The role of the solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries[J]. Energy & Environmental Science, 2018, 11(7):1803-1810. [67] LIN X D, YUAN R M, CAI S R, et al. An open-structured matrix as oxygen cathode with high catalytic activity and large Li2O2 accommodations for lithium-oxygen batteries[J]. Advanced Energy Materials, 2018, 8(18):doi:10.1002/aemn.201800089. [68] LIANG S, XIA Y, LIANG C, et al. A green and facile strategy for the low-temperature and rapid synthesis of Li2S@PC-CNT cathodes with high Li2S content for advanced Li-S batteries[J]. Journal of Materials Chemistry A, 2018, 6(21):9906-9914. [69] ZHAN Y J, YU H L, BEN L B, et al. Application of Li2S to compensate for loss of active lithium in a Si-C anode[J]. Journal of Materials Chemistry A, 2018, 6(15):6206-6211. [70] ZUBAIR U, AMICI J, FRANCIA C, et al. Polysulfide binding to several nanoscale magneli phases synthesized in carbon for long-life lithium-sulfur battery cathodes[J]. ChemSusChem, 2018, 11(11):1838-1848. [71] LIU X C, YANG Y, WU J J, et al. Dynamic hosts for high-performance Li-S batteries studied by cryogenic transmission electron microscopy and in situ X-ray diffraction[J]. ACS Energy Letters, 2018, 3(6):1325-1330. [72] ZHENG J, FAN X L, JI G B, et al. Manipulating electrolyte and solid electrolyte interphase to enable safe and efficient Li-S batteries[J]. Nano Energy, 2018, 50:431-440. [73] ZHANG N, LI B, LI S M, et al. Mesoporous hybrid electrolyte for simultaneously inhibiting lithium dendrites and polysulfide shuttle in Li-S batteries[J]. Advanced Energy Materials, 2018, 8(16):doi:10.1002/aemn.201703124. [74] ELANGO R, DEMORTIERE A, DE ANDRADE V, et al. Thick binder-free electrodes for Li-ion battery fabricated using templating approach and spark plasma sintering reveals high areal capacity[J]. Advanced Energy Materials, 2018, 8(15):doi:10.1002/aenm.201703031. [75] BARENO J, RAGO N D, DOGAN F, et al. Effect of overcharge on Li(Ni0.5Mn0.3Co0.2)O-2/graphite lithium ion cells with poly(vinylidene fluoride) binder. Ⅲ-Chemical changes in the cathode[J]. Journal of Power Sources, 2018, 385:165-171. [76] GIEL H, HENRIQUES D, BOURNE G, et al. Investigation of the heat generation of a commercial 2032(LiCoO2) coin cell with a novel differential scanning battery calorimeter[J]. Journal of Power Sources, 2018, 390:116-126. [77] ZHANG W B, RICHTER F H, CULVER S P, et al. Degradation mechanisms at the Li10GeP2S12/LiCoO2 cathode interface in an all-solid-state lithium-ion battery[J]. ACS Applied Materials & Interfaces, 2018, 10(26):22226-22236. [78] HISCHIER R, KWON N H, BROG J P, et al. Early-stage sustainability evaluation of nanoscale cathode materials for lithium ion batteries[J]. ChemSusChem, 2018, 11(13):2068-2076. [79] KAFLE J, HARRIS J, CHANG J, et al. Development of wide temperature electrolyte for graphite/LiNiMnCoO2 Li-ion cells:High throughput screening[J]. Journal of Power Sources, 2018, 392:60-68. [80] AKTEKIN B, LACEY M J, NORDH T, et al. Understanding the capacity loss in LiNi0.5Mn1.5O4-Li4Ti5O12 lithium-ion cells at ambient and elevated temperatures[J]. Journal of Physical Chemistry C, 2018, 122(21):11234-11248. [81] HONG M S, YANG C Z, WONG R A, et al. Determining the facile routes for oxygen evolution reaction by in situ probing of Li-O2 cells with conformal Li2O2 films[J]. Joural of the American Chemical Society, 2018, 140(20):6190-6193. [82] JUNG E Y, PARK C S, LEE J C, et al. Influences of graphite electrode on degradation induced by accelerated charging-discharging cycling in lithium-ion battery[J]. Molecular Crystals and Liquid Crystals, 2018, 663(1):90-98. [83] CONNELL J G, ZHU Y S, ZAPOL P, et al. Crystal orientation-dependent reactivity of oxide surfaces in contact with lithium metal[J]. ACS Applied Materials & Interfaces, 2018, 10(20):17471-17479. [84] LANG S Y, XIAO R J, GU L, et al. Interfacial mechanism in lithium-sulfur batteries:How salts mediate the structure evolution and dynamics[J]. Journal of the American Chemical Society, 2018, 140(26):8147-8155. [85] BAE Y, KO D H, LEE S, et al. Enhanced stability of coated carbon electrode for Li-O-2 batteries and its limitations[J]. Advanced Energy Materials, 2018, 8(16):doi:10.1002/aenm.201702661. [86] JONES J P, JONES S C, KRAUSE F C, et al. In situ polysulfide detection in lithium sulfur cells[J]. Journal of Physical Chemistry Letters, 2018, 9(13):3751-3755. [87] ILOTT A J, JERSCHOW A. Probing solid-electrolyte interphase(SEI) growth and ion permeability at undriven electrolyte-metal interfaces using Li-7 NMR[J]. Journal of Physical Chemistry C, 2018, 122(24):12598-12604. [88] HAYAMIZU K, SEKI S, HAISHI T. Non-uniform lithium-ion migration on micrometre scale for garnet-and NASICON-type solid electrolytes studied by Li-7 PGSE-NMR diffusion spectroscopy[J]. Physical Chemistry Chemical Physics, 2018, 20(26):17615-17623. [89] NGUYEN V S, MAI V H, SENZIER P A, et al. Direct evidence of lithium ion migration in resistive switching of lithium cobalt oxide nanobatteries[J]. Small, 2018, 14(24):doi:10.1002/smll.201801038. [90] WOOD K N, STEIRER K X, HAFNER S E, et al. Operando X-ray photoelectron spectroscopy of solid electrolyte interphase formation and evolution in Li2S-P2S5 solid-state electrolytes[J]. Nature Communications, 2018, 9:doi:10.1038/s41467-018-04762-82490. [91] HABTE B T, JIANG F M. Microstructure reconstruction and impedance spectroscopy study of LiCoO2, LiMn2O4 and LiFePO4 Li-ion battery cathodes[J]. Microporous and Mesoporous Materials, 2018, 268:69-76. [92] KLEINER K, STREHLE B, BAKER A R, et al. Origin of high capacity and poor cycling stability of Li-rich layered oxides:A long-duration in situ synchrotron powder diffraction study[J]. Chemistry of Materials, 2018, 30(11):3656-3667. [93] FINSTERBUSCH M, DANNER T, TSAI C L, et al. High capacity garnet-based all-solid-state lithium batteries:Fabrication and 3D-microstructure resolved modeling[J]. ACS Applied Materials & Interfaces, 2018, 10(26):22329-22339. [94] CHOI Y S, LEE J C. Phase transition behaviors and formation of electrically resistive phases at the anode:Major factors determining the energy efficiency of Li-ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(24):11531-11541. [95] BRAUN P, UHLMANN C, WEISS M, et al. Assessment of all-solid-state lithium-ion batteries[J]. Journal of Power Sources, 2018, 393:119-127. [96] BRYDEN T S, DIMITROV B, HILTON G, et al. Methodology to determine the heat capacity of lithium-ion cells[J]. Journal of Power Sources, 2018, 395:369-378. [97] XIAO W J, XIN C, LI S B, et al. Insight into fast Li diffusion in Li-excess spinel lithium manganese oxide[J]. Journal of Materials Chemistry A, 2018, 6(21):9893-9898. [98] CORTES H A, VILDOSOLA V L, BARRAL M A, et al. Effect of halogen dopants on the properties of Li2O2:Is chloride special?[J]. Physical Chemistry Chemical Physics, 2018, 20(25):16924-16931. [99] HANNAH D C, GAUTAM G S, CANEPA P, et al. On the balance of intercalation and conversion reactions in battery cathodes[J]. Advanced Energy Materials, 2018, 8(20):doi:10.1002/aenm.201800379. [100] CHEN Y Y, BEN L B, CHEN B, et al. Impact of high valence state cation Ti/Ta surface doping on the stabilization of spinel LiNi0.5Mn1.5O4 cathode materials:A systematic density functional theory investigation[J]. Advanced Materials Interfaces, 2018, 5(12):doi:10.1002/adml.201800077. |
[1] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[2] | Yingwei PEI, Hong ZHANG, Xinghui WANG. Recent advances in the electrolytes of rechargeable zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2075-2082. |
[3] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[4] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[5] | ZHANG Yan, WANG Hai, LIU Zhaomeng, ZHANG Deliu, WANG Jiadong, LI Jianzhong, GAO Xuanwen, LUO Wenbin. Research progress of nickel-rich ternary cathode material ncm for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1693-1705. |
[6] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[7] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
[8] | LI Yitao, SHEN Kaier, PANG Quanquan. Advance in organics enhanced sulfide-based solid-state batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1902-1918. |
[9] | ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. |
[10] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[11] | Maolin FANG, Ying ZHANG, Lin QIAO, Shumin LIU, Zhongqi CAO, Huamin ZHANG, Xiangkun MA. Research progress of iron-chromium flow batteries technology [J]. Energy Storage Science and Technology, 2022, 11(5): 1358-1367. |
[12] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
[13] | Honghui WANG, Zeqin WU, Deren CHU. Thermal behavior of lithium titanate based Li ion batteries under slight over-discharging condition [J]. Energy Storage Science and Technology, 2022, 11(5): 1305-1313. |
[14] | Zhicheng CHEN, Zongxu LI, Ling CAI, Yisi LIU. Development status and future prospects of flexible metal-air batteries [J]. Energy Storage Science and Technology, 2022, 11(5): 1401-1410. |
[15] | Xinyi WANG, Weijie LI, Chao HAN, Huakun LIU, Shixue DOU. Challenges and optimization strategies of the anode of aqueous zinc-ion battery [J]. Energy Storage Science and Technology, 2022, 11(4): 1211-1225. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||