[1] JO B, BANERJEE D. Thermal properties measurement of binary carbonate salt mixtures for concentrating solar power plants[J]. Journal of Renewable and Sustainable Energy, 2015, 7(3):1-15.
[2] SANG Lixia, CAI Meng, ZHAO Yangbo, et al. Mixed metal carbonates/hydroxides for concentrating solar power analyzed with DSC and XRD[J]. Solar Energy Materials and Solar Cells, 2015, 140(4):167-173.
[3] MIGUEL M T D, ENCINAS S V, LASANTA M I, et al. Corrosion resistance of HR3C to a carbonate molten salt for energy storage applications in CSP plants[J]. Solar Energy Materials and Solar Cells, 2016, 157(2):966-972.
[4] WU Jinqiao, DING Jing, LU Jianfeng, et al. Migration and phase change phenomena and characteristics of molten salt leaked into soil porous system[J]. International Journal of Heat and Mass Transfer, 2017, 111(3):312-320.
[5] QIN Yue, LENG Guanghui, YU Xiang, et al. Sodium sulfate-diatomite composite materials for high temperature thermal energy storage[J]. Powder Technology, 2015, 282(6):37-42.
[6] LIU Ruiping, ZHANG Fang, SU Weiming, et al. Impregnation of porous mullite with Na2SO4, phase change material for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2015, 134(1):268-274.
[7] FAN Liwu, KHODADADI J M. Thermal conductivity enhancement of phase change materials for thermal energy storage:A review[J]. Renewable and Sustainable Energy Reviews, 2011, 15(1):24-46.
[8] ZALBA B, MARÍN J M, CABEZA L F, et al. Review on thermal energy storage with phase change:Materials, heat transfer analysis and applications[J]. Applied Thermal Engineering, 2003, 23(3):251-283.
[9] LIU Chang, LI Feng, MA Laipeng, et al. Advanced materials for energy storage[J]. Advanced Materials, 2010, 22(8):28-62.
[10] GE Zhiwei, YE Feng, CAO Hui, et al. Carbonate-salt-based composite materials for medium-and high-temperature thermal energy storage[J]. Particuology, 2014, 15(4):77-81.
[11] YE Feng, GE Zhiwei, DING Yulong, et al. Multi-walled carbon nanotubes added to Na2CO3/MgO composites for thermal energy storage[J]. Particuology, 2014, 15(4):56-60.
[12] QIN Yue, YU Xiang, LENG Guanghui, et al. Effect of diatomite content on diatomite matrix based composite phase change thermal storage material[J]. Material Research Innovations, 2014, 18(2):453-456.
[13] DENG Yong, LI Jinhong, QIAN Tingting, et al. Preparation and characterization of KNO3/diatomite shape-stabilized composite phase change material for high temperature thermal energy storage[J]. Journal of Materials Science and Technology, 2017, 33(2):198-203.
[14] SANG Lixia, LI Feng, XU Yongwang. Form-stable ternary carbonates/MgO composite material for high temperature thermal energy storage[J]. Solar Energy, 2019, 180(4):1-7.
[15] 韩春晖, 王周福, 王玺堂, 等. 熔盐/镁橄榄石基复合相变蓄热材料的制备[J]. 稀有金属材料与工程, 2015, 44(1):515-519. HAN Chunhui, WANG Zhoufu, WANG Xitang, et al. Preparation of molten salt/magnesium olivine based composite phase change thermal storage material[J]. Rare Metal Materials and Engineering, 2015, 44(1):515-519.
[16] SHI L, YU X, WANG H, et al. The investigation of solid-solid contact interface thermal transfer[J]. Cryogenics and Superconductivity, 2008, 36(4):61-64.
[17] WANG H L, WAGNER TH, ESKA G. An aluminium heat switch made from cold-pressed Cu-Al composite[J]. Physica B:Physics of Condensed Matter, 2000, 284(7):2024-2025. |