1 |
陆雅翔, 赵成龙, 容晓晖, 等. 室温钠离子电池材料及器件研究进展[J]. 物理学报, 2018, 67(12): doi: 10.7498/aps.67.20180847.
|
|
LU Yaxiang, ZHAO Chenglong, RONG Xiaohui, et al. Research progress of materials and devices for room-temperature Na-ion batteries [J]. Acta Physica Sinica, 2018, 67(12): doi: 10.7498/aps.67.20180847.
|
2 |
LI Yunming, LU Yaxiang, ZHAO Chenglong, et al. Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage[J]. Energy Storage Materials, 2017, 7: 130-151.
|
3 |
PAN Huilin, HU Yongsheng, CHEN Liquan. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage [J]. Energy & Environmental Science, 2013, 6(8): 2338-2360.
|
4 |
LU Yaxiang, RONG Xiaohui, HU Yongsheng, et al. Research and development of advanced battery materials in China[J]. Energy Storage Materials, 2019, 23: 144-153.
|
5 |
HU Yongsheng, KOMABA S, FORSYTH M, et al. A new emerging technology: Na-ion batteries[J]. Small Methods, 2019, 3: doi: 10.1002/smtd.201900184.
|
6 |
容晓晖, 陆雅翔, 戚兴国, 等. 钠离子电池: 从基础研究到工程化探索[J]. 储能科学与技术, 2020, 9(2): 515-522.
|
|
RONG Xiaohui, LU Yaxiang, QI Xingguo, et al. Na-ion batteries: from fundamental research to engineering exploration[J]. Energy Storage Science and Technology, 2020, 5(2): 515-522.
|
7 |
周权, 戚兴国, 陆雅翔, 等. 钠离子电池标准制定的必要性[J]. 储能科学与技术, 2020, doi: 10.19799/j.cnki. 2095-4239. 2020.0085.
doi: 10.19799/j.cnki.2095-4239.2020.0085
|
|
ZHOU Quan, QI Xingguo, LU Yaxiang, et al. The necessity of establishing Na-ion battery standards[J]. Energy Storage Science and Technology, 2020, doi: 10.19799/j.cnki.2095-4239.2020.0085.
doi: 10.19799/j.cnki.2095-4239.2020.0085
|
8 |
DENG Jianqiu, LUO Wenbin, CHOU Shu-Lei, et al. Sodium-ion batteries: from academic research to practical commercialization [J]. Advanced Energy Materials, 2017, 8(4): doi: 10.1002/aenm.201701428.
|
9 |
王红, 廖小珍, 颉莹莹, 等. 新型移动式钠离子电池储能系统设计与研究[J]. 储能科学与技术, 2016, 5(1): 65-68.
|
|
WANG Hong, LIAO Xiaozhen, JI Yingying, et al. Design and investigation on portable energy storage device based on sodium-ion batteries[J]. Energy Storage Science and Technology, 2016, 5(1): 65-68.
|
10 |
KUBOTA K, KOMABA S. Review—Practical issues and future perspective for Na-ion batteries[J]. Journal of the Electrochemical Society, 2015, 162: A2538-A2550.
|
11 |
SUN Y K, MYUNG S T, PARK B C, et al. High-energy cathode material for long-life and safe lithium batteries[J]. Nature Materials, 2009, 8: 320-324.
|
12 |
QI Xingguo, WANG Yuesheng, JIANG Liwei, et al. Sodium-deficient O3-Na0.9[Ni0.4MnxTi0.6-x]O2 layered-oxide cathode materials for sodium-ion batteries[J]. Particle & Particle Systems Characterization, 2016, 33: 538-544.
|
13 |
WANG Yuesheng, LIU Jue, Byungju LEE, et al. Ti-substituted tunnel-type Na0.44MnO2 oxide as a negative electrode for aqueous sodium-ion batteries[J]. Nature Communications, 2015, 6: 6401-6410.
|
14 |
WANG Jianfang, YANG Heping, ZHOU Chunsheng, et al. Template-assisted preparation of MnO2@MnO2 hollow nanospheres and their research of capacitance performance[J]. Materials Letters, 2020, 262: doi: 10.1016/j.matlet.2019.127139.
|
15 |
LI Wangda, ERICKSON E, MANTHIRAM A, et al. High-nickel layered oxide cathodes for lithium-based automotive batteries[J]. Nature Energy, 2020, 5: 26-34.
|