Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (2): 432-439.doi: 10.19799/j.cnki.2095-4239.2020.0365
• Energy Storage Materials and Devices • Previous Articles Next Articles
Chunyan YANG1,2, Yunlong MA3, Xiaoqiong FENG1,2, Shiying ZHANG1, Changsheng AN1, Jingfeng LI2
Received:
2020-11-12
Revised:
2021-01-06
Online:
2021-03-05
Published:
2021-03-05
CLC Number:
Chunyan YANG, Yunlong MA, Xiaoqiong FENG, Shiying ZHANG, Changsheng AN, Jingfeng LI. Research progress of carbon-based materials in aluminum-ion batteries[J]. Energy Storage Science and Technology, 2021, 10(2): 432-439.
1 | TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367. |
2 | HERFURTH H J. Building better batteries[J]. Nature, 2008, 451(7179): 652-657. |
3 | SUN Yang-Kook, MYUNG Seung-Taek, PARK Byung-Chun, et al. High-energy cathode material for long-life and safe lithium batteries[J]. Nature Materials, 2009, 8(4): 320-326. |
4 | HUESO K B, ARMAND M, ROJO T. High temperature sodium batteries: status, challenges and future trends[J]. Energy & Environmental Science, 2013, 6(3): 734-749. |
5 | ZHANG Qingfeng, CHENG Xueli, WANG Chengxin, et al. Sulfur-assisted large-scale synthesis of graphene microspheres for superior potassium-ion batteries[J]. Energy & Environmental Science, 2021. DOI: 10.1039/D0EE03203D. |
6 | AURBACH D, LU Z, SCHECHTER A, et al. Prototype systems for rechargeable magnesium batteries[J]. Chemical Information, 2000, 407(6805): 724-727. |
7 | LI Qingfeng, BJERRUM N J. Aluminum as anode for energy storage and conversion: A review[J]. Journal of Power Sources, 2002, 110(1): 1-10. |
8 | WEI Jiang, CHEN Wei, CHEN Demin, et al. An amorphous carbon-graphite composite cathode for long cycle life rechargeable aluminum ion batteries[J]. Journal of Materials Science & Technology, 2018, 34(6): 983-989. |
9 | WANG Shutao, KRAVCHYK K V, KRUMEICH F, et al. Kish graphite flakes as a cathode material for an aluminum chloride-graphite battery[J]. ACS Applied Materials & Interfaces, 2017, 9(34): 28478-28485. |
10 | WALTER M, KRAVCHYK K V, BOFER C, et al. Polypyrenes as high-performance cathode materials for aluminum batteries[J]. Advanced Materials, 2018, 30(15): 1705644. |
11 | DONG Xiaozhong, XU Hanyan, CHEN Hao, et al. Commercial expanded graphite as high-performance cathode for low-cost aluminum-ion battery[J]. Carbon, 2019, 148: 134-140. |
12 | 陈皓. 高性能铝-石墨烯电池材料研究[D]. 杭州: 浙江大学, 2017.CHEN Hao. Research on high performance aluminum-graphene battery materials [D]. Hangzhou: Zhejiang University, 2017. |
13 | JIAO Shuqiang, LEI Haiping, TU Jiguo, et al. An industrialized prototype of the rechargeable Al/AlCl3 - [EMIm]Cl/graphite battery and recycling of the graphitic cathode into graphene[J]. Carbon, 2016, 109: 276-281. |
14 | JAYAPRAKASH N, DAS S K, ARCHER L A. The rechargeable aluminum-ion battery[J]. Chemical Communications, 2011, 47(47): 12610-12612. |
15 | LIU S, HU J J, YAN N F, et al. Aluminum storage behavior of anatase TiO2 nanotube arrays in aqueous solution for aluminum ion batteries[J]. Energy & Environmental Science, 2012, 5(12): 9743-9746. |
16 | 张弘, 李镇江. 新型铝离子电池正极材料MoS2的制备及其电化学性能[J]. 青岛科技大学学报(自然科学版), 2018, 39(4): 47-52.ZHANG Hong, LI Zhenjiang. Preparation and electrochemical performance of MoS2, a new anode material for aluminum-ion batteries[J]. Journal of Qingdao University of Science and Technology (Natural Science), 2018, 39(4): 47-52. |
17 | LI Zhenjiang, GAO Chenghai, ZHANG Jinhui, et al. Mountain-like nanostructured 3D Ni3S2 on Ni foam for rechargeable aluminum battery and its theoretical analysis on charge/discharge mechanism[J]. Journal of Alloys and Compounds, 2019, 798: 500-506. |
18 | LI Caixia, DONG Shihua, TANG Rui, et al. Heteroatomic interface engineering in MOF-derived carbon heterostructures with built-in electric-field effects for high performance Al-ion batteries[J]. Energy & Environmental Science, 2018, 11(11): 3201-3211. |
19 | SUN Haobo, WANG Wei, YU Zhijing, et al. A new aluminium-ion battery with high voltage, high safety and low cost[J]. Chemical Communications, 2015, 51(59): 11892-11895. |
20 | LIN Mengchang, GONG Ming, LU Bingan, et al. An ultrafast rechargeable aluminium-ion battery[J]. Nature, 2015, 520(7547): 325-331. |
21 | WANG Diyan, WEI Chuanyu, LIN Mengchang, et al. Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode[J]. Nature Communications, 2017, 8: 14283-14289. |
22 | WU Yingpeng, GONG Ming, LIN Mengchang, et al. 3D graphitic foams derived from chloroaluminate anion intercalation for ultrafast aluminum-Ion battery[J]. Advanced Materials, 2016, 28(41): 9218-9222. |
23 | HU Haoyu, CAI Tonghui, BAI Peng, et al. Small graphite nanoflakes as an advanced cathode material for aluminum ion batteries[J]. Chemical Communications, 2020, 56(10): 1593-1596. |
24 | ZHANG Erjin, WANG Bin, WANG Jue, et al. Rapidly synthesizing interconnected carbon nanocage by microwave toward high-performance aluminum batteries[J]. Chemical Engineering Journal, 2020, 389: 124407. |
25 | WU Musheng, XU Bo, CHEN Liquan, et al. Geometry and fast diffusion of AlCl4- cluster intercalated in graphite[J]. Electrochimica Acta, 2016, 195: 158-165. |
26 | BHAURIYAL P, MAHATA A. The staging mechanism of AlCl4- intercalation in a graphite electrode for an aluminium-ion battery[J]. Physical Chemistry Chemical Physics, 2017, 19(11): 7980-7989. |
27 | JUNG Sung Chul, KANG Yong-Ju, YOO Dong-Joo, et al. Flexible few-layered graphene for the ultrafast rechargeable aluminum-ion battery[J]. Journal of Physical Chemistry C, 2016, 120(25): 13384-13389. |
28 | RANI J V, KANAKAIAH V, DADMAL T, et al. Fluorinated natural graphite cathode for rechargeable ionic liquid based aluminum-ion battery[J]. Journal of the Electrochemical Society, 2013, 160(10): 1781-1784. |
29 | XU J H, TUMEY D E, JADHAV A L, et al. Effects of graphite structure and ion transport on the electrochemical properties of pechargeable aluminum-graphite batteries[J]. ACS Applied Energy Materials, 2019, 2(11): 7799-7810. |
30 | FAN Changling, HE Huan, ZHANG Kehe, et al. Structural developments of artificial graphite scraps in further graphitization and its relationships with discharge capacity[J]. Electrochimica Acta, 2012, 75(4): 311-315. |
31 | WANG Junxiang, TU Jiguo, LEI Haiping, et al. The effect of graphitization degree of carbonaceous material on the electrochemical performance for aluminum-ion batteries[J]. RSC Advances, 2019, 9(67): 38990-38997. |
32 | 任文才, 成会明. 柔性、高导电的石墨烯三维网络结构体材料[J]. 科学观察, 2014(6): 35-36.REN Wencai, CHENG Huiming. Flexible and highly conductive graphene 3D network structure materials[J]. Scientific Observation, 2014(6): 35-36. |
33 | DAS S K, MAHAPATRA S, LAHAN H, et al. Aluminium-ion batteries: Developments and challenges[J]. Journal of Materials Chemistry, 2017, 5(14): 6347-6367. |
34 | CHEN Hao, GUO Fan, LIU Yingjun, et al. A defect-free principle for advanced graphene cathode of aluminum-ion battery[J]. Advanced Materials, 2017, 29(12): 5958-5964. |
35 | CHEN Hao, XU Hanyan, WANG Siyao, et al. Ultrafast all-climate aluminum-graphene battery with quarter-million cycle life[J]. Science Advances, 2017, 3(12): 7233-7239. |
36 | YU Xinzhi, WANG Bin, GONG Decai, et al. Graphene nanoribbons on highly porous 3D graphene for high-capacity and ultrastable aluminum-ion batteries[J]. Advanced Materials, 2017, 29(4): 1604118. |
37 | CHEN Hao, CHEN Chen, LIU Yingjun, et al. High-quality graphene microflower design for high-performance Li-S and Al-ion batteries[J]. Advanced Energy Materials, 2017, 7(17): 1700051. |
38 | LIN Li-Chiang, GROSSMAN J C. Atomistic understandings of reduced graphene oxide as an ultrathin-film nanoporous membrane for separations[J]. Nature Communications, 2015, 6: 8335-8341. |
39 | BANDURIN D A, TOREE I, KUMAR R K, et al. Negative local resistance caused by viscous electron backflow in graphene[J]. Science, 2016, 351(627): 1055-1058. |
40 | GAO Bo, BOWER C, LORENTZEN J D, et al. Enhanced saturation lithium composition in ball-milled single-walled carbon nanotubes[J]. Chemical Physics Letters, 2000, 327(2): 69-75. |
41 | ELISEEV A A, YASHINA L V, BRZHEZINSKAYA M M, et al. Structure and electronic properties of AgX (X = Cl, Br, I)-intercalated single-walled carbon nanotubes[J]. Carbon, 2010, 48(10): 2708-2721. |
42 | BHAURIYAL P, MAHATA A, PATHAK B, et al. A computational study of a single-walled carbon-nanotube-based ultrafast high-capacity aluminum battery[J]. Chemistry - An Asian Journal, 2017, 12(15): 1944-1951. |
43 | JIAO Handong, WANG Junxiang, TU Jiguo, et al. Aluminum-ion asymmetric supercapacitor incorporating carbon nanotubes and an ionic liquid electrolyte: Al/AlCl3- [EMIm]Cl/CNTs[J]. Energy Technology, 2016, 4(9): 1112-1118. |
44 | ZHANG Erjin, WANG Jue, WANG Bin, et al. Unzipped carbon nanotubes for aluminum battery[J]. Energy Storage Materials, 2019, 23: 72-78. |
45 | HAN Mei, LÜ Zichuan, HOU Lixue, et al. Graphitic multi-walled carbon nanotube cathodes for rechargeable Al-ion batteries with well-defined discharge plateaus[J]. Journal of Power Sources, 2020, 451: 69-77. |
46 | LIU Zhaomeng, WANG Jue, DING Hongbo, et al. Carbon nanoscrolls for aluminum battery[J]. ACS Nano, 2018, 12(8): 8456-8466. |
[1] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
[2] | Yongli TONG, Xiang WU. Electrochemical performance of Co3O4 electrode materials derived from Co metal-organic framework [J]. Energy Storage Science and Technology, 2022, 11(3): 1035-1043. |
[3] | Dangling LIU, Shimin WANG, Zhihui GAO, Lufu XU, Shubiao XIA, Hong GUO. Properties of three-dimensional NZSPO/PAN-[PEO-NATFST] sodium-battery-composite solid electrolyte [J]. Energy Storage Science and Technology, 2021, 10(3): 931-937. |
[4] | Xinxin ZHU, Wei JIANG, Zhengwei WAN, Shu ZHAO, Zeheng LI, Liguang WANG, Wenbin NI, Min LING, Chengdu LIANG. Research progress in electrolyte and interfacial issues of solid lithium sulfur batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 848-862. |
[5] | Jixian WANG, Sikan PENG, Wenzheng NAN, Xiang CHEN, Chen WANG, Shaojiu YAN, Shenglong DAI. Preparation of graphene-coated Li1.22Mn0.52Ni0.26O2 using a spray drying method for lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(1): 111-117. |
[6] | Jin WANG, Jianquan WANG, Dianbo RUAN, Jiao XIE, Bin YANG. Preparation and electrochemical performances of Si/activated carbon composites [J]. Energy Storage Science and Technology, 2021, 10(1): 104-110. |
[7] | Jiajing ZHU, Yun GAO. Research progress of water-in-salt electrolytes [J]. Energy Storage Science and Technology, 2020, 9(S1): 13-22. |
[8] | Jian SHEN, Bixiong HUANG, Zhaokang XIE, Jiayin LI, Ningning LIU, Zhiqiang JIA. Internal structure layout and optimization design of FSEC racing power battery box [J]. Energy Storage Science and Technology, 2020, 9(S1): 31-38. |
[9] | Caiwen WU, Lijing HUANG, Chunyang ZOU, Bowen LI, Wenjuan WU. Research progress of the lignin in application energy storage [J]. Energy Storage Science and Technology, 2020, 9(6): 1737-1746. |
[10] | Mengying MA, Huilin PAN, Yongsheng HU. Progress in electrolyte research for non-aqueous sodium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1234-1250. |
[11] | MA Tengfei, MA Chao, SUN Rui, JI Hongmei, YANG Gang. Freeze-drying assisted synthesis of mno/reduced graphene composite and the improved rate cyclic performance for lithium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(4): 1044-1051. |
[12] | XIONG Xiaolin, YUE Jinming, ZHOU Anxing, SUO Liumin, HU Yongsheng, LI Hong, HUANG Xuejie. Electrochemical performance of spinel LiMn2O4 inWater-in-salt aqueouselectrolyte [J]. Energy Storage Science and Technology, 2020, 9(2): 375-384. |
[13] | ZHANG Hehe, SUN Dan, WANG Haiyan, TANG Yougen. Current studies of anode materials for potassium-ion battery [J]. Energy Storage Science and Technology, 2020, 9(1): 25-39. |
[14] | REN Ya, WANG Ying, XU Zhiyu, YAN Xiao, HUANG Bixiong. Graphite modified LiNi1/3Co1/3Mn1/3O2 cathodes with improved performance for lithium-ion battery [J]. Energy Storage Science and Technology, 2019, 8(5): 935-940. |
[15] | XU Hui, YANG Liuqing, YIN Fan, YANG Gang. Preparation and electrochemical performance of amorphous carbon coated tin-based anode materials [J]. Energy Storage Science and Technology, 2019, 8(4): 732-737. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||