Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (2): 647-657.doi: 10.19799/j.cnki.2095-4239.2020.0358
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Haobin LIANG1,2(), Jianhua DU1,2(), Xin HAO1,2, Shizhi YANG1,2, Ran TU1,2, Rencheng ZHANG1,2
Received:
2020-11-05
Revised:
2021-01-04
Online:
2021-03-05
Published:
2021-03-05
CLC Number:
Haobin LIANG, Jianhua DU, Xin HAO, Shizhi YANG, Ran TU, Rencheng ZHANG. A review of current research on the formation mechanism of lithium batteries[J]. Energy Storage Science and Technology, 2021, 10(2): 647-657.
1 | 闫雅婧. 锂离子电池用固态电解质的研究现状与展望[J]. 无机盐工业, 2020, 52(7): 22-25. |
YAN Yajing. Research status and prospects of solid electrolytes for lithium ion batteries[J]. Inorganic Chemicals Industry, 2020, 52(7): 22-25. | |
2 | 吴艳华. 锂离子电池三元正极材料现状及发展趋势[J]. 世界有色金属, 2020(8): 1-3. |
WU Yanhua. Status and development trend of ternary cathode materials for lithium-ion batteries[J]. World Nonferrous Metals, 2020(8): 1-3. | |
3 | LI R, REN D, GUO D, et al. Volume deformation of large-format lithium ion batteries under different degradation paths[J]. Journal of the Electrochemical Society, 2019, 166(16): 4106-4114. |
4 | BEAULIEU L Y, EBERMAN K W, TUMER R L, et al. Colossal reversible volume changes in lithium alloys[J]. Electrochemical and Solid-State Letters, 2001, 4(9): doi: 10.1149/1.1388178. |
5 | LARESGOITI I, KAEBITZ S, ECKER M, et al. Modeling mechanical degradation in lithium ion batteries during cycling: Solid electrolyte interphase fracture[J]. Journal of Power Sources, 2015, 300: 112-122. |
6 | MUKHOPADHYAY A, SHELDON B W. Deformation and stress in electrode materials for Li-ion batteries[J]. Progress in Materials, 2014, 63: 58-116. |
7 | FU R, XIAO M, CHOE S Y. Modeling, validation and analysis of mechanical stress generation and dimension changes of a pouch type high power Li-ion battery[J]. Journal of Power Sources, 2013, 224: 211-224. |
8 | LOULI A J, ELLIS L D, DAHN J R. Operando pressure measurements reveal solid electrolyte interphase growth to rank Li-ion cell performance[J]. Joule, 2019, 3(3): 745-761. |
9 | ZHANG N, TANG H. Dissecting anode swelling in commercial lithium-ion batteries[J]. Journal of Power Sources, 2012, 218: 52-55. |
10 | 陈伟峰. 软包装锂离子电池产气机理研究和预测[D]. 北京: 清华大学, 2012. |
CHEN Weifeng. Research and prediction on the gas production mechanism of soft packaging lithium-ion batteries[D]. Beijing: Tsinghua University, 2012. | |
11 | BERNHARD R, SIMON V E, KATHARINA R, ANDREAS J. A new method to model the thickness change of a commercial pouch cell during discharge[J]. Journal of the Electrochemical Society, 2016, 163(8): doi: 10.1149/2.0441608jes. |
12 | DAI H, YU C, WEI X, et al. State of charge estimation for lithium-ion pouch batteries based on stress measurement[J]. Energy, 2017, 129: 16-27. |
13 | 王帝, 张俊英, 刘英博, 等. 动力电池循环膨胀力研究[J]. 电源技术, 2020, 44(5): 673-675+689. |
WANG Di, ZHANG Junying, LIU Yingbo, et al. Research on cycle expansion force of power battery[J]. Chinese Journal of Power Sources, 2020, 44(5): 673-675+689. | |
14 | 李伟. 锂离子电池石墨负极变形行为实验与模拟研究[D]. 镇江: 江苏大学, 2019. |
LI Wei. Experimental and simulation research on deformation behavior of graphite anode of lithium ion battery[D]. Zhenjiang: Jiangsu University, 2019. | |
15 | KONG F, KOSTECKI R, NADEAU G, et al. In situ studies of SEI formation[J]. Journal of Power Sources, 2001, 97: 58-66. |
16 | 褚赓. 锂离子电池硅基负极材料的研究[D]. 北京: 中国科学院大学(中国科学院物理研究所), 2017. |
CHU Geng. Research on silicon-based anode materials for lithium-ion batteries[D]. Beijing: University of Chinese Academy of Sciences (Institute of Physics, Chinese Academy of Sciences), 2017. | |
17 | 马天翼. 硅负极复合材料及其电化学界面特性研究[D]. 北京: 清华大学, 2017. |
MA Tianyi. Research on silicon anode composite material and its electrochemical interface characteristics[D]. Beijing: Tsinghua University, 2017. | |
18 | 王舒玮, 胡和丰, 王德宇, 等. 钠离子电池HOPG负极固体电解质界面膜的AFM研究[J]. 无机材料学报, 2017, 32(6): 596-602. |
WANG Shuwei, HU Hefeng, WANG Deyu, et al. AFM study on the solid electrolyte interface membrane of HOPG anode in sodium ion battery[J]. Journal of Inorganic Materials, 2017, 32(6): 596-602. | |
19 | BOYER M J, HWANG G S. Theoretical evaluation of ethylene carbonate anion transport and its impact on solid electrolyte interphase formation[J]. Electrochimica Acta, 2018, 266: 326-331. |
20 | GARCIA R E, CHIANG Y M, CRAIG C W, et al. Microstructural modeling and design of rechargeable lithium-ion batteries[J]. Journal of the Electrochemical Society, 2005, 152(1): doi: 10.1149/1.1836132. |
21 | LIU D, WANG Y, XIE Y, et al. On the stress characteristics of graphite anode in commercial pouch lithium-ion battery[J]. Journal of Power Sources, 2013, 232: 29-33. |
22 | 贺雨雨, 陈炜, 冯德圣, 等. 黏结剂对锂离子电池负极膨胀的影响[J]. 电池, 2017, 47(3): 169-172. |
HE Yuyu, CHEN Wei, FENG Desheng, et al. Effects of binders on swelling of anode for Li-ion battery[J]. Battery Bimonthly, 2017, 47(003): 169-172. | |
23 | 张正德. 锂离子软包装电池变形研究[D]. 北京: 清华大学, 2012. |
ZHANG Zhengde. The study of distortion of polymer lithium ion battery[D]. Beijing: Tsinghua University, 2012. | |
24 | 李宇. 磷酸铁锂电池短路特性研究与探测预警装置开发[D]. 厦门: 华侨大学, 2019. |
LI Yu. Research on short circuit characteristics of lithium iron phosphate battery and development of detection and early warning device[D]. Xiamen: Huaqiao University, 2019. | |
25 | 王瑜东, 杨凯, 高飞, 等. 钛酸锂电池胀气程度与循环性能的关系研究[J]. 高电压技术, 2018, 44(1): 152-159. |
WANG Yudong, YANG Kai, GAO Fei, et al. Study on the relationship between the degree of flatulence and cycle performance of lithium titanate batteries[J]. High Voltage Engineering, 2018, 44(1): 152-159. | |
26 | LIAO Z, ZHANG S, ZHAO Y, et al. Experimental evaluation of thermolysis-driven gas emissions from LiPF6-carbonate electrolyte used in lithium-ion batteries[J]. Journal of Energy Chemistry, 2020, 49: 124-135. |
27 | 王念举, 孟繁慧, 于利伟, 等. 电压对锂离子电池高温存储产气的影响[J]. 电源技术, 2020, 44(7): 957-960. |
WANG Nianju, MENG Fanhui, YU Liwei, et al. The influence of voltage on the gas production of lithium-ion battery at high temperature storage[J]. Chinese Journal of Power Sources, 2020, 44(7): 957-960. | |
28 | 吴凯. Li4Ti5O12基锂离子动力电池的高温胀气行为研究[D]. 上海: 上海交通大学, 2014. |
WU Kai. High temperature flatulence behavior of Li4Ti5O12-based lithium-ion power battery[D]. Shanghai: Shanghai Jiao Tong University, 2014. | |
29 | WU Xinzhan, LOU Shuaifeng, CHENG Xinqun, et al. Unravelling the interface layer formation and gas evolution/suppression on a TiNb2O7 anode for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(32): 27056-27062. |
30 | 张大峰, 刘炜, 刘丽. 软包锂电池高温胀气改善研究[J]. 电源技术, 2019, 43(2): 231-233. |
ZHANG Dafeng, LIU Wei, LIU Li. Study on the improvement of high-temperature flatulence in soft-pack lithium batteries[J]. Chinese Journal of Power Sources, 2019, 43(2): 231-233. | |
31 | 刘燕燕, 王绥军, 金翼, 等. 钛酸锂电池胀气成分的气相色谱分析[J]. 电源技术, 2017, 41(10): 1396-1398. |
LIU Yanyan, WANG Suijun, JIN Yi, et al. Gas chromatographic analysis of flatulence components of lithium titanate batteries[J]. Chinese Journal of Power Sources, 2017, 41(10): 1396-1398. | |
32 | FELL C R, SUN L, HALLAC P B, et al. Investigation of the gas generation in lithium titanate anode based lithium ion batteries[J]. Journal of the Electrochemical Society, 2015, 162(9): 1916-1920. |
33 | 吴宁宁, 安富强, 杨道均, 等. 锰酸锂电池中水分及产气的研究[J]. 电源技术, 2014, 38(1): 35-37. |
WU Ningning, AN Fuqiang, YANG Daojun, et al. Study on moisture and gas production in lithium manganite batteries[J]. Chinese Journal of Power Sources, 2014, 38(1): 35-37. | |
34 | 李慧芳, 高俊奎, 李飞, 等. 锂离子电池浮充测试的鼓胀原因分析及改善[J]. 电源技术, 2013, 37(12): 2123-2126. |
LI Huifang, GAO Junkui, LI Fei, et al. Cause analysis and improvement of swelling in floating charge test of lithium ion battery[J]. Chinese Journal of Power Sources, 2013, 37(12): 2123-2126. | |
35 | MAO C Y, RUTHER R E, GENG Linxiao, et al. Evaluation of gas formation and consumption driven by crossover effect in high-voltage lithium-ion batteries with Ni-rich NMC cathodes[J]. ACS Applied Materials & Interfaces, 2019, 11(46): 43235-43243 |
36 | KONG W, LI H, HUANG X, et al. Gas evolution behaviors for several cathode materials in lithium-ion batteries[J]. Journal of Power Sources, 2005, 142(1/2): 285-291. |
37 | 赵彦孛, 陈佳郁, 张树国. 锂离子电池鼓胀分析[J]. 电源技术, 2020, 44(6): 822-824+895. |
ZHAO Yanbi, CHEN Jiayu, ZHANG Shuguo. Analysis of lithium ion battery swelling[J]. Chinese Journal of Power Sources, 2020, 44(06): 822-824+895. | |
38 | RASHID M, GUPTA A . Mathematical model for combined effect of sei formation and gas evolution in Li-ion batteries[J]. ECS Electrochemistry Letters, 2014, 3(10): A95-A98. |
39 | MATASSO A, WONG D, WETZ D, et al. Effects of high-rate cycling on the bulk internal pressure rise and capacity degradation of commercial LiCoO2 cells[J]. Journal of the Electrochemical Society, 2015, 162(6): A885-A891. |
40 | 王子君. 液态软包装LiFePO4锂离子电池气胀问题的研究[D]. 天津: 天津大学, 2009. |
WANG Zijun. Research on the swelling problem of LiFePO4 lithium-ion battery in liquid soft packaging[D]. Tianjin: Tianjin University, 2009. |
[1] | Yu SHI, Zhong ZHANG, Jingying YANG, Wei QIAN, Hao LI, Xiang ZHAO, Xintong YANG. Opportunity cost modelling and market strategy of energy storage participating in the AGC market [J]. Energy Storage Science and Technology, 2022, 11(7): 2366-2373. |
[2] | Jiayu YUAN, Xinguang LI, Wenchao WANG, Chengkuo FU. Simulation of serpentine cooling structure of battery pack considering mass flow [J]. Energy Storage Science and Technology, 2022, 11(7): 2274-2281. |
[3] | Peng HUANG, Zhigen NIE, Zheng CHEN, Xing SHU, Shiquan SHEN, Jipeng YANG, Jiangwei SHEN. Capacity prediction of lithium battery based on optimized Elman neural network [J]. Energy Storage Science and Technology, 2022, 11(7): 2282-2294. |
[4] | WU Yida, ZHANG Yi, ZHAN Yuanjie, GUO Yaqi, ZHANG liao, LIU Xingjiang, YU Hailong, ZHAO Wenwu, HUANG Xuejie. The effect of B2O3 modification on the electrochemical properties of LiCoO2 cathode [J]. Energy Storage Science and Technology, 2022, 11(6): 1687-1692. |
[5] | Suhang WANG, Jianlin LI, Yaxin LI, Junjie XIONG, Wei ZENG. Research on charging strategy of lithium-ion battery system at low temperature [J]. Energy Storage Science and Technology, 2022, 11(5): 1537-1542. |
[6] | Bowen CHEN, Ruiguang CUI, Yanbin SHEN, Liwei CHEN. Application of a novel method for characterization of local Young’s modulus in lithium (ion) batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 991-999. |
[7] | Xiang WANG, Jing XU, Yajun DING, Fan DING, Xin XU. Optimal design of liquid cooling pipeline for battery module based on VCALB [J]. Energy Storage Science and Technology, 2022, 11(2): 547-552. |
[8] | Zhiguo AN, Xian ZHANG, Hui ZHU, Chunjie ZHANG. Heat dissipation performance of honeycomb-like thermal management system combined CPCM with water cooling for lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(1): 211-220. |
[9] | Yingkai WANG, Hong ZHANG, Xinghui WANG. Hybrid 1DCNN-LSTM model for predicting lithium ion battery state of health [J]. Energy Storage Science and Technology, 2022, 11(1): 240-245. |
[10] | Xinyu CAO, Fei PENG, Liwei LI, Jianguang YIN. SOC estimation of lithium battery based on IBAS-NARX neural network model [J]. Energy Storage Science and Technology, 2021, 10(6): 2342-2351. |
[11] | Jianjiang XIE, Xiang GAO, Chengqiang XIA, Yi ZHENG, Hao WANG. Research on information acquisition system of lithium battery energy storage cabin [J]. Energy Storage Science and Technology, 2021, 10(3): 1109-1116. |
[12] | Miao JIANG, Hongli WAN, Gaozhan LIU, Wei WENG, Chao WANG, Xiayin YAO. Co0.1Fe0.9S2@Li7P3S11composite cathode material for all-solid-state lithium batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 925-930. |
[13] | Chengxin SHAN, Liwei LI, Yuxin YANG. SOC of estimation of lithium battery based on IACO-PF [J]. Energy Storage Science and Technology, 2021, 10(3): 1145-1152. |
[14] | Xi LI, Yajuan YU, Zhiqi ZHANG, Lei WANG, Kai HUANG. Advance and patent analysis of solid electrolyte in solid-state lithium batteries [J]. Energy Storage Science and Technology, 2021, 10(1): 77-86. |
[15] | Jiang'an ZHANG, Hongbai YANG, Zuohan ZHOU. Adaptive estimation method for full charge capacity of lithium battery [J]. Energy Storage Science and Technology, 2020, 9(6): 1976-1981. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||