Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (6): 2191-2199.doi: 10.19799/j.cnki.2095-4239.2021.0191
• Energy Storage System and Engineering • Previous Articles Next Articles
Xiuliang CHANG1,2,3(), Lili ZHENG1,2,3(), Shouli WEI1,2,3, Tao ZHANG1,2,3, Bing CHEN1,2,3, Zhuo XU1,2,3, Zuoqiang DAI1,2,3
Received:
2021-05-02
Revised:
2021-06-05
Online:
2021-11-05
Published:
2021-11-03
CLC Number:
Xiuliang CHANG, Lili ZHENG, Shouli WEI, Tao ZHANG, Bing CHEN, Zhuo XU, Zuoqiang DAI. Progress in thermal runaway simulation of lithium-ion batteries[J]. Energy Storage Science and Technology, 2021, 10(6): 2191-2199.
1 | CHOMBO P V, LAOONUAL Y. A review of safety strategies of a Li-ion battery[J]. Journal of Power Sources, 2020, 478: doi: 10.1016/j.jpowsour.2020.228649. |
2 | AN Z, SHAH K, JIA L, et al. Modeling and analysis of thermal runaway in Li-ion cell[J]. Applied Thermal Engineering, 2019, 160: doi: 10.1016/j.applthermaleng.2019.113960. |
3 | HALLAJ S, MALEKI H, HONG J S, et al. Thermal modeling and design considerations of lithium-ion batteries[J]. Journal of Power Sources, 1999, 83(1/2): 1-8. |
4 | KWON K H, SHIN C B, KANG T H, et al. A two-dimensional modeling of a lithium-polymer battery[J]. Journal of Power Sources, 2006, 163(1): 151-157. |
5 | NEWMAN J S, TOBIAS C W. Theoretical analysis of current distribution in porous electrodes[J]. Journal of the Electrochemical Society, 1962, 109(12): doi: 10.1149/1.2425269. |
6 | 李坤. 锂离子动力电池热—电化学耦合特性分析及有限元模拟[D]. 北京: 北京理工大学, 2016. |
LI K. Study on electrochemical thermal analysis and finite element modelling for lithium ion power battery[D]. Beijing: Beijing Institute of Technology, 2016. | |
7 | REN D S, FENG X N, LIU L S, et al. Investigating the relationship between internal short circuit and thermal runaway of lithium-ion batteries under thermal abuse condition[J]. Energy Storage Materials, 2021, 34: 563-573. |
8 | 梅文昕, 段强领, 王青山, 等. 大型磷酸铁锂电池高温热失控模拟研究[J]. 储能科学与技术, 2021, 10(1): 202-209. |
MEI W X, DUAN Q L, WANG Q S, et al. Thermal runaway simulation of large-scale lithium iron phosphate battery at elevated temperatures[J]. Energy Storage Science and Technology, 2021, 10(1): 202-209. | |
9 | 黄文才, 胡广地, 邓宇翔, 等. 锂离子电池的高温热失控模拟[J]. 电池, 2019, 49(3): 204-207. |
HUANG W C, HU G D, DENG Y X, et al. Analysis on high temperature thermal runaway simulation of Li-ion battery[J]. Battery Bimonthly, 2019, 49(3): 204-207. | |
10 | 黄文才, 胡广地, 张琦, 等. 锂离子电池高温热模拟及热行为[J]. 电池, 2018, 48(6): 410-413. |
HUANG W C, HU G D, ZHANG Q, et al. High temperature thermal simulation and thermal behavior of Li-ion battery[J]. Battery Bimonthly, 2018, 48(6): 410-413. | |
11 | 赵磊. 局部高温面热源接触下锂离子电池热失控特性研究[D]. 镇江: 江苏大学, 2019. |
ZHAO L. Study on thermal runaway characteristics of lithium-ion battery under local high temperature surface heat source[D]. Zhenjiang: Jiangsu University, 2019. | |
12 | 宁凡雨, 王松蕊, 刘兴江. LiNixCoyMnzO2/C电池热稳定性模拟研究[J]. 电源技术, 2020, 44(7): 937-941. |
NING F Y, WANG S R, LIU X J. Simulation study on thermal stability of LiNixCoyMnzO2/C cells[J]. Chinese Journal of Power Sources, 2020, 44(7): 937-941. | |
13 | KRISTON A, PODIAS A, ADANOUJ I, et al. Analysis of the effect of thermal runaway initiation conditions on the severity of thermal runaway—Numerical simulation and machine learning study[J]. Journal of the Electrochemical Society, 2020, 167(9): doi: 10.1149/1945-7111/ab9b0b. |
14 | 徐晓明, 袁秋奇, 张扬军, 等. 极耳侧加热条件下锂离子电池热失控的数值分析[J]. 汽车安全与节能学报, 2020, 11(3): 388-396. |
XU X M, YUAN Q Q, ZHANG Y J, et al. Numerical analysis of thermal runaway of lithium-ion battery by heating form polar[J]. Journal of Automotive Safety and Energy, 2020, 11(3): 388-396. | |
15 | SUN X D, XU X M, ZHAO L J, et al. Blocking analysis of thermal runaway of a lithium-ion battery under local high temperature based on the material stability and heat dissipation coefficient[J]. Ionics, 2021, 27(1): 107-122. |
16 | TANG W, XU X M, LI R Z, et al. Suppression of the lithium-ion battery thermal runaway during quantitative-qualitative change[J]. Ionics, 2020, 26(12): 6133-6143. |
17 | HU H, XU X M, SUN X D, et al. Numerical study on the inhibition control of lithium-ion battery thermal runaway[J]. ACS Omega, 2020, 5(29): 18254-18261. |
18 | CHEN Y Q, KANG Y Q, ZHAO Y, et al. A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards[J]. Journal of Energy Chemistry, 2021, 59: 83-99. |
19 | WANG J G, MEI W X, CUI Z X, et al. Experimental and numerical study on penetration-induced internal short-circuit of lithium-ion cell[J]. Applied Thermal Engineering, 2020, 171: doi: 10.1016/j.applthermaleng.2020.115082. |
20 | 崔志仙. 锂离子电池内短路诱发热失控机制研究[D]. 合肥: 中国科学技术大学, 2018. |
CUI Z X. Study on thermal runaway mechanism of lithium ion battery induced by internal short circuit[D]. Hefei: University of Science and Technology of China, 2018. | |
21 | LI Y D, WANG W W, LIN C, et al. Multi-physics safety model based on structure damage for lithium-ion battery under mechanical abuse[J]. Journal of Cleaner Production, 2020, 277: doi: 10.1016/j.jclepro.2020.124094. |
22 | LEE D C, KIM C W. Two-way nonlinear mechanical-electrochemical-thermal coupled analysis method to predict thermal runaway of lithium-ion battery cells caused by quasi-static indentation[J]. Journal of Power Sources, 2020, 475: doi: 10.1016/j.jpowsour. 2020.228678. |
23 | LI H G, LIU B H, ZHOU D, et al. Coupled mechanical-electrochemical-thermal study on the short-circuit mechanism of lithium-ion batteries under mechanical abuse[J]. Journal of the Electrochemical Society, 2020, 167(12): doi: 10.1149/1945-7111/aba96f. |
24 | XIA Y, WIERZBICKI T, SAHRAEI E, et al. Damage of cells and battery packs due to ground impact[J]. Journal of Power Sources, 2014, 267: 78-97. |
25 | 齐创, 朱艳丽, 高飞, 等. 过充电条件下锂离子电池热失控数值模拟[J]. 北京理工大学学报, 2017, 37(10): 1048-1055. |
QI C, ZHU Y L, GAO F, et al. Thermal runaway analysis of lithium-ion battery with overcharge[J]. Transactions of Beijing Institute of Technology, 2017, 37(10): 1048-1055. | |
26 | HOSSEINZADEH E, ARIAS S, KRISHNA M, et al. Quantifying cell-to-cell variations of a parallel battery module for different pack configurations[J]. Applied Energy, 2021, 282: doi: 10.1016/j.apenergy.2020.115859. |
27 | 崔志仙, 王青松, 孙金华. 锂枝晶导致的锂离子电池内短路模拟研究[J]. 火灾科学, 2019, 28(2): 101-112. |
CUI Z X, WANG Q S, SUN J H. Numerical study on lithium dendrite-induced internal short circuit of lithium ion battery[J]. Fire Safety Science, 2019, 28(2): 101-112. | |
28 | WANG J G, MEI W X, CUI Z X, et al. Investigation of the thermal performance in lithium-ion cells during polyformaldehyde nail penetration[J]. Journal of Thermal Analysis and Calorimetry, 2021, 145(6): 3255-3268. |
29 | 邹时波, 李顶根, 李卫, 等. 相变材料热管理下电池热失控传播过程数值分析[J]. 工程热物理学报, 2019, 40(5): 1105-1111. |
ZOU S B, LI D G, LI W, et al. Numerical study of battery thermal runaway propagation using PCM for thermal management[J]. Journal of Engineering Thermophysics, 2019, 40(5): 1105-1111. | |
30 | 王兵. 车用锂离子动力电池及模组热失控的实验与仿真研究[D]. 北京: 北京工业大学, 2018. |
WANG B. Study on thermal runaway of lithium-ion power battery or module for electric vehicle through experiment and simulation[D]. Beijing: Beijing University of Technology, 2018. | |
31 | 齐创, 邝男男, 张亚军, 等. 高比能锂离子电池模组热扩散行为仿真研究[J/OL]. 高电压技术, 2021, https://doi.org/10.13336/j.1003-6520.hve.20201049. |
QI C, KUANG N N,ZHANG Y J, et al. Study on the thermal propagation behavior of high energy density lithium-ion battery module with simulation[J/OL]. High Voltage Engineering, 2021, https://doi.org/10.13336/j.1003-6520.hve.20201049. | |
32 | QIN J X, ZHAO S P, LIU X, et al. Simulation study on thermal runaway suppression of 18650 lithium battery[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2020: 1-13. |
33 | 李顶根, 邹时波, 徐鹏, 等. 不同热管理方案下锂离子电池模组温度特性分析[J]. 汽车工程学报, 2020, 10(2): 98-106. |
LI D G, ZOU S B, XU P, et al. Analysis of temperature characteristics of lithium ion battery modules under different thermal management schemes[J]. Chinese Journal of Automotive Engineering, 2020, 10(2): 98-106. | |
34 | WANG G H, GAO Q, YAN Y Y, et al. Transient process optimization of battery cooling on heat transfer enhancement structure[J]. Applied Thermal Engineering, 2021, 182: doi: 10.1016/j.applthermaleng.2020.115897. |
35 | 黄文才. 基于COMSOL的锂离子电池热失控模拟分析和研究[D]. 成都: 西南交通大学, 2019. |
HUANG W C. Simulation and research on thermal runaway of lithium ion battery based on COMSOL[D]. Chengdu: Southwest Jiaotong University, 2019. | |
36 | YE M Q, HU G D, GUO F, et al. A novel semi-analytical solution for calculating the temperature distribution of the lithium-ion batteries during nail penetration based on Green's function method[J]. Applied Thermal Engineering, 2020, 174: doi: 10.1016/j.applthermaleng.2020.115129. |
37 | 张胜. 动力锂电池内部温度估计研究[D]. 合肥: 合肥工业大学, 2019. |
ZHANG S. Research on internal temperature estimation of power lithium battery[D]. Hefei: Hefei University of Technology, 2019. | |
38 | MEI W X, DUAN Q L, LU W, et al. An investigation on expansion behavior of lithium ion battery based on the thermal-mechanical coupling model[J]. Journal of Cleaner Production, 2020, 274: doi: 10.1016/j.jclepro.2020.122643. |
[1] | Jianmin HAN, Feiyu XUE, Shuangyin LIANG, Tianshu QIAO. Hybrid energy storage system assisted frequency modulation simulation of the coal-fired unit under fuzzy control optimization [J]. Energy Storage Science and Technology, 2022, 11(7): 2188-2196. |
[2] | Shunmin YI, Linbo XIE, Li PENG. Remaining useful life prediction of lithium-ion batteries based on VF-DW-DFN [J]. Energy Storage Science and Technology, 2022, 11(7): 2305-2315. |
[3] | Guohui FENG, Tianyu WANG, Gang WANG. A simulation analysis on the effect of encapsulation mode on the heat storage and release performance of phase change water tank [J]. Energy Storage Science and Technology, 2022, 11(7): 2161-2176. |
[4] | Qingwei ZHU, Xiaoli YU, Qichao WU, Yidan XU, Fenfang CHEN, Rui HUANG. Semi-empirical degradation model of lithium-ion battery with high energy density [J]. Energy Storage Science and Technology, 2022, 11(7): 2324-2331. |
[5] | Yuzuo WANG, Jin WANG, Yinli LU, Dianbo RUAN. Study on the effects of pore structure on lithium-storage performances for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(7): 2023-2029. |
[6] | Yuhan GUO, Dan YU, Peng YANG, Ziji WANG, Jintao WANG. Optimal capacity allocation method of a distributed energy storage system based on greedy algorithm [J]. Energy Storage Science and Technology, 2022, 11(7): 2295-2304. |
[7] | Wenlan YE, Ming ZHAO, Mingyu HU, Yang TIAN. Analysis of heat storage and release performance of tube bundle phase change heat accumulator [J]. Energy Storage Science and Technology, 2022, 11(7): 2151-2160. |
[8] | Zhongbo LI, Jingxiao HAN, Chengcheng WANG, Hui YANG, Na YANG, Shaowu YIN, Li WANG, Lige TONG, Zhiwei TANG, Yulong DING. Simulation and the parameter influence relationship of the discharging process in a thermochemical reactor [J]. Energy Storage Science and Technology, 2022, 11(7): 2133-2140. |
[9] | Wei KONG, Jingtao JIN, Xipo LU, Yang SUN. Study on cooling performance of lithium ion batteries with symmetrical serpentine channel [J]. Energy Storage Science and Technology, 2022, 11(7): 2258-2265. |
[10] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[11] | YAN Qiaoyi, WU Feng, CHEN Renjie, LI Li. Recovery and resource recycling of graphite anode materials for spent lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1760-1771. |
[12] | YU Chunhui, HE Ziying, ZHANG Chenxi, LIN Xianqing, XIAO Zhexi, WEI Fei. The analyses and suppressing strategies of silicon anode with the electrolyte [J]. Energy Storage Science and Technology, 2022, 11(6): 1749-1759. |
[13] | DING Yi, YANG Yan, CHEN Kai, ZENG Tao, HUANG Yunhui. Intelligent fire protection of lithium-ion battery and its research method [J]. Energy Storage Science and Technology, 2022, 11(6): 1822-1833. |
[14] | WU Xiaoling, ZHOU Tao, LIU Yuzhao, DU Yanping, CHEN Huiping, LI Shun. Numerical study on cooling enhancement of micro devices by designing turbulence based hollow micro pin-fin arrays with lateral holes [J]. Energy Storage Science and Technology, 2022, 11(6): 1980-1987. |
[15] | WANG Yuzuo, DENG Miao, WANG Jin, YANG Bin, LU Yinli, JIN Ge, RUAN Dianbo. Study on the effects of carbonization temperature on lithium-storage kinetics for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(6): 1715-1724. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||