1 |
CHEN W D, LIANG J, YANG Z H, et al. A review of lithium-ion battery for electric vehicle applications and beyond[J]. Energy Procedia, 2019, 158: 4363-4368.
|
2 |
HANNAN M A, LIPU M S H, HUSSAIN A, et al. A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations[J]. Renewable and Sustainable Energy Reviews, 2017, 78: 834-854.
|
3 |
熊瑞. 动力电池管理系统核心算法[M]. 北京: 机械工业出版社, 2018.
|
|
XIONG R. Core algorithm of battery management system for EVs[M]. Beijing: China Machine Press, 2018.
|
4 |
LIN C, YU Q Q, XIONG R, et al. A study on the impact of open circuit voltage tests on state of charge estimation for lithium-ion batteries[J]. Applied Energy, 2017, 205: 892-902.
|
5 |
罗勇, 祁朋伟, 黄欢, 等. 基于容量修正的安时积分SOC估算方法研究[J]. 汽车工程, 2020, 42(5): 681-687.
|
|
LUO Y, QI P W, HUANG H, et al. Study on battery SOC estimation by ampere-hour integral method with capacity correction[J]. Automotive Engineering, 2020, 42(5): 681-687.
|
6 |
CHEMALI E, KOLLMEYER P J, PREINDL M, et al. State-of-charge estimation of Li-ion batteries using deep neural networks: A machine learning approach[J]. Journal of Power Sources, 2018, 400: 242-255.
|
7 |
LI Z, ZHANG P, WANG Z F, et al. State of charge estimation for Li-ion battery based on extended Kalman filter[J]. Energy Procedia, 2017, 105: 3515-3520.
|
8 |
魏孟, 李嘉波, 李忠玉, 等. 基于高斯过程回归的UKF锂离子电池SOC估计[J]. 储能科学与技术, 2020, 9(4): 1206-1213.
|
|
WEI M, LI J B, LI Z Y, et al. SOC estimation of Li-ion batteries based on Gaussian process regression and UKF[J]. Energy Storage Science and Technology, 2020, 9(4): 1206-1213.
|
9 |
PENG J K, LUO J Y, HE H W, et al. An improved state of charge estimation method based on cubature Kalman filter for lithium-ion batteries[J]. Applied Energy, 2019, 253: doi: 10.1016/j.apenergy. 2019.113520.
|
10 |
LAI X, GAO W K, ZHENG Y J, et al. A comparative study of global optimization methods for parameter identification of different equivalent circuit models for Li-ion batteries[J]. Electrochimica Acta, 2019, 295: 1057-1066.
|
11 |
LAI X, ZHENG Y J, SUN T. A comparative study of different equivalent circuit models for estimating state-of-charge of lithium-ion batteries[J]. Electrochimica Acta, 2018, 259: 566-577.
|
12 |
田茂飞, 安治国, 陈星, 等. 基于在线参数辨识和AEKF的锂电池SOC估计[J]. 储能科学与技术, 2019, 8(4): 745-750.
|
|
TIAN M F, AN Z G, CHEN X, et al. SOC estimation of lithium battery based online parameter identification and AEKF[J]. Energy Storage Science and Technology, 2019, 8(4): 745-750.
|
13 |
LI Y G, CHEN J Q, LAN F C. Enhanced online model identification and state of charge estimation for lithium-ion battery under noise corrupted measurements by bias compensation recursive least squares[J]. Journal of Power Sources, 2020, 456: doi: 10.1016/j.jpowsour.2020.227984.
|
14 |
WANG T P, CHEN S Z, REN H B, et al. Model-based unscented Kalman filter observer design for lithium-ion battery state of charge estimation[J]. International Journal of Energy Research, 2018, 42(4): 1603-1614.
|
15 |
CUI X Y, JING Z, LUO M J, et al. A new method for state of charge estimation of lithium-ion batteries using square root cubature Kalman filter[J]. Energies, 2018, 11(1): doi: 10.3390/en11010209.
|
16 |
CILDEN D, SOKEN H E, HAJIYEV C. Nanosatellite attitude estimation from vector measurements using SVD-aided UKF algorithm[J]. Metrology and Measurement Systems, 2017, 24(1): 113-125.
|