Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (12): 3978-3986.doi: 10.19799/j.cnki.2095-4239.2022.0405
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Zhuo XU1,2,3(), Xichao LI1,2,3, Longzhou JIA1,2,3, Bing CHEN1,2,3, Zuoqiang DAI1,2,3(), Lili ZHENG1,2,3
Received:
2022-07-18
Revised:
2022-08-23
Online:
2022-12-05
Published:
2022-12-29
Contact:
Zuoqiang DAI
E-mail:xuzhuoxz@163.com;daizuoqiangqdu@163.com
CLC Number:
Zhuo XU, Xichao LI, Longzhou JIA, Bing CHEN, Zuoqiang DAI, Lili ZHENG. Effect of overcharge cycle on capacity attenuation and safety of lithium-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(12): 3978-3986.
Table 5
Characteristic parameters of thermal runaway of four batteries"
参数 | 新电池 | 4.3 V过充循环电池 | 4.4 V过充循环电池 | 4.5 V过充循环电池 |
---|---|---|---|---|
T1/℃ | 78.62 | 75.44 | 76.06 | 73.76 |
T2/℃ | 241.42 | 229.91 | 237.54 | 222.72 |
T3/℃ | 512.26 | 517.23 | 656.79 | 656.30 |
T4/℃ | 195.93 | 178.71 | 180.89 | 183.59 |
T5/℃ | 208.97 | 199.78 | 201.09 | 199.36 |
Td/℃ | 137.77 | 132.86 | 128.39 | 127.88 |
试验前质量/g | 44.13 | 44.08 | 44.21 | 44.02 |
试验后质量/g | 12.69 | 14.57 | 19.85 | 17.54 |
减重比/% | 71.24 | 66.75 | 55.10 | 60.15 |
1 | ATTIDEKOU P S, WANG C, ARMSTRONG M, et al. A new time constant approach to online capacity monitoring and lifetime prediction of lithium ion batteries for electric vehicles (EV)[J]. Journal of the Electrochemical Society, 2017, 164(9): doi: 10.1149/2.0101709jes. |
2 | SASAKI T, UKYO Y, NOVÁK P. Memory effect in a lithium-ion battery[J]. Nature Materials, 2013, 12(6): 569-575. |
3 | ZHANG L, ZHANG Z C, AMINE K. Redox shuttles for overcharge protection of lithium-ion batteries[C]//Batteries and Energy Technology(General)-221ST ECS Meeting. 2013: 57-66. |
4 | 朱基亮, 杜翀, 何亮明, 等. 锂离子电池的热稳定性和大电流充放电稳定性研究[J]. 四川大学学报(工程科学版), 2011, 43(4): 205-208. |
ZHU J L, DU C, HE L M, et al. Study on thermal and large charge-discharge stability of Li-ion batteries[J]. Journal of Sichuan University (Engineering Science Edition), 2011, 43(4): 205-208. | |
5 | ZHANG S S, XU K, JOW T R. Electrochemical impedance study on the low temperature of Li-ion batteries[J]. Electrochimica Acta, 2004, 49(7): 1057-1061. |
6 | KONG D P, WEN R X, PING P, et al. Study on degradation behavior of commercial 18650 LiAlNiCoO2 cells in over-charge conditions[J]. International Journal of Energy Research, 2019, 43(1): 552-567. |
7 | LIU J L, DUAN Q L, MA M N, et al. Aging mechanisms and thermal stability of aged commercial 18650 lithium ion battery induced by slight overcharging cycling[J]. Journal of Power Sources, 2020, 445: doi: 10.1016/j.jpowsour.2019.227263. |
8 | 张青松, 赵启臣. 过充循环对锂离子电池老化及安全性影响[J]. 高电压技术, 2020, 46(10): 3390-3397. |
ZHANG Q S, ZHAO Q C. Effects of overcharge cycling on the aging and safety of lithium ion batteries[J]. High Voltage Engineering, 2020, 46(10): 3390-3397. | |
9 | 杨胜杰, 罗冰洋, 王菁, 等. 基于容量增量曲线峰值区间特征参数的锂离子电池健康状态估算[J]. 电工技术学报, 2021, 36(11): 2277-2287. |
YANG S J, LUO B Y, WANG J, et al. State of health estimation for lithium-ion batteries based on peak region feature parameters of incremental capacity curve[J]. Transactions of China Electrotechnical Society, 2021, 36(11): 2277-2287. | |
10 | DUBARRY M, TRUCHOT C, LIAW B Y, et al. Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications. Part II. Degradation mechanism under 2 C cycle aging[J]. Journal of Power Sources, 2011, 196(23): 10336-10343. |
11 | DUBARRY M, TRUCHOT C, LIAW B Y, et al. Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications[J]. Journal of the Electrochemical Society, 2012, 160(1): doi: 10.1149/2.063301jes. |
12 | ZHENG H Y, QU Q T, ZHU G B, et al. Quantitative characterization of the surface evolution for LiNi0.5Co0.2Mn0.3O2/graphite cell during long-term cycling[J]. ACS Applied Materials & Interfaces, 2017, 9(14): 12445-12452. |
13 | AURBACH D, MARKOVSKY B, WEISSMAN I, et al. On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries[J]. Electrochimica Acta, 1999, 45(1/2): 67-86. |
14 | MALLARAPU A, KIM J, CARNEY K, et al. Modeling extreme deformations in lithium ion batteries[J]. eTransportation, 2020, 4: doi: 10.1016/j.etran.2020.100065. |
15 | MEI W X, ZHANG L, SUN J H, et al. Experimental and numerical methods to investigate the overcharge caused lithium plating for lithium ion battery[J]. Energy Storage Materials, 2020, 32: 91-104. |
16 | WANG Q S, JIANG L H, YU Y, et al. Progress of enhancing the safety of lithium ion battery from the electrolyte aspect[J]. Nano Energy, 2019, 55: 93-114. |
17 | FENG X N, FANG M, HE X M, et al. Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry[J]. Journal of Power Sources, 2014, 255: 294-301. |
18 | FENG X N, ZHENG S Q, REN D S, et al. Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database[J]. Applied Energy, 2019, 246: 53-64. |
19 | FENG X N, ZHENG S Q, HE X M, et al. Time sequence map for interpreting the thermal runaway mechanism of lithium-ion batteries with LiNixCoyMnzO2 cathode[J]. Frontiers in Energy Research, 2018, 6: 126. |
20 | RICHARD M N, DAHN J R. Accelerating rate calorimetry study on the thermal stability of lithium intercalated graphite in electrolyte. I. experimental[J]. Journal of the Electrochemical Society, 1999, 146(6): 2068-2077. |
21 | CHEN Z H, QIN Y, REN Y, et al. Multi-scale study of thermal stability of lithiated graphite[J]. Energy & Environmental Science, 2011, 4(10): 4023. |
22 | WANG Q S, SUN J H, YAO X L, et al. Thermal behavior of lithiated graphite with electrolyte in lithium-ion batteries[J]. Journal of the Electrochemical Society, 2006, 153(2): doi: 10.1149/1.2139955. |
23 | BAK S M, HU E Y, ZHOU Y N, et al. Structural changes and thermal stability of charged LiNixMnyCozO2 cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy[J]. ACS Applied Materials & Interfaces, 2014, 6(24): 22594-22601. |
24 | SPOTNITZ R, FRANKLIN J. Abuse behavior of high-power, lithium-ion cells[J]. Journal of Power Sources, 2003, 113(1): 81-100. |
25 | JO M, NOH M, OH P, et al. A new high power LiNi0.81Co0.1Al0.09O2cathode material for lithium-ion batteries[J]. Advanced Energy Materials, 2014, 4(13): doi: 10.1002/aenm.201301583. |
26 | WANG H Y, TANG A D, HUANG K L. Oxygen evolution in overcharged LixNi1/3Co1/3Mn1/3O2 electrode and its thermal analysis kinetics[J]. Chinese Journal of Chemistry, 2011, 29(8): 1583-1588. |
27 | RÖDER P, BABA N, FRIEDRICH K A, et al. Impact of delithiated Li0FePO4 on the decomposition of LiPF6-based electrolyte studied by accelerating rate calorimetry[J]. Journal of Power Sources, 2013, 236: 151-157. |
28 | WANG G W, ZHANG S, LI M, et al. Deformation and failure properties of high-Ni lithium-ion battery under axial loads[J]. Materials (Basel, Switzerland), 2021, 14(24): 7844. |
29 | PASTOR-FERNÁNDEZ C, DHAMMIKA WIDANAGE W, MARCO J, et al. Identification and quantification of ageing mechanisms in Lithium-ion batteries using the EIS technique[C]//2016 IEEE Transportation Electrification Conference and Expo. Dearborn, MI. IEEE, 2016: 1-6. |
30 | LIU Y D, LIU Q, LI Z F, et al. Failure study of commercial LiFePO4 cells in over-discharge conditions using electrochemical impedance spectroscopy[J]. Journal of the Electrochemical Society, 2014, 161(4): doi: 10.1149/2.090404jes. |
31 | BARRÉ A, DEGUILHEM B, GROLLEAU S, et al. A review on lithium-ion battery ageing mechanisms and estimations for automotive applications[J]. Journal of Power Sources, 2013, 241: 680-689. |
32 | 葛昊, 李宁, 戴长松. LiCoXMnYNi1- X- YO2电极材料的研究进展[J]. 电池工业, 2008, 13(2): 120-122, 131. |
GE H, LI N, DAI C S. Research progress on LiCoXMnYNi1- X- YO2 electrode material[J]. Chinese Battery Industry, 2008, 13(2): 120-122, 131. |
[1] | Xiaoyu CHEN, Mengmeng GENG, Qiankun WANG, Jiani SHEN, Yijun HE, Zifeng MA. Electrochemical impedance feature selection and gaussian process regression based on the state-of-health estimation method for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2995-3002. |
[2] | Yue ZHANG, Depeng KONG, Ping PING. Performance and design optimization of a cold plate for inhibiting thermal runaway propagation of lithium-ion battery packs [J]. Energy Storage Science and Technology, 2022, 11(8): 2432-2441. |
[3] | Chengshan XU, Borui LU, Mengqi ZHANG, Huaibin WANG, Changyong JIN, Minggao OUYANG, Xuning FENG. Study on thermal runaway gas evolution in the lithium-ion battery energy storage cabin [J]. Energy Storage Science and Technology, 2022, 11(8): 2418-2431. |
[4] | Lei XU, Xiaopeng LIU, Yongyu WANG. Early warning analysis of the thermal runaway process of full-size prefabricated cabin storage tank [J]. Energy Storage Science and Technology, 2022, 11(8): 2463-2470. |
[5] | Shuang SHI, Nawei LYU, Jingxuan MA, Kangyong YIN, Lei SUN, Ning ZHANG, Yang JIN. Comparative study on the effectiveness of different types of gas detection on the overcharge safety early warning of a lithium iron phosphate battery energy storage compartment [J]. Energy Storage Science and Technology, 2022, 11(8): 2452-2462. |
[6] | ping ZHUO, Yanli ZHU, Chuang QI, Congjie WANG, Fei GAO. Combustion and explosion characteristics of lithium-ion battery pack under overcharge [J]. Energy Storage Science and Technology, 2022, 11(8): 2471-2479. |
[7] | Jianxin LU, Ying ZHANG, Chuyuan MA, Kang DENG, Chunying LEI. Study on fire-extinguishing performance of hydrogel on lithium-iron-phosphate batteries [J]. Energy Storage Science and Technology, 2022, 11(8): 2637-2644. |
[8] | Tao YIN, Longzhou JIA, Xiuliang CHANG, Zuoqiang DAI, Lili ZHENG. Research on thermal safety of soft-pack LiFePO4 battery after high-voltage float charge [J]. Energy Storage Science and Technology, 2022, 11(8): 2546-2555. |
[9] | Yang WANG, Xu LU, Yuxin ZHANG, Long LIU. Thermal runaway exhaust strategy of power battery [J]. Energy Storage Science and Technology, 2022, 11(8): 2480-2487. |
[10] | Qingsong ZHANG, Yang ZHAO, Tiantian LIU. Effects of state of charge and battery layout on thermal runaway propagation in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(8): 2519-2525. |
[11] | Hang YU, Ying ZHANG, Chaohang XU, Sihan YU. Research progress of thermal runaway prevention and control technology for lithium battery energy storage systems [J]. Energy Storage Science and Technology, 2022, 11(8): 2653-2663. |
[12] | Laifeng SONG, Wenxin MEI, Zhuangzhuang JIA, Qingsong WANG. Analysis of thermal runaway characteristics of 280 Ah large LiFePO4 battery under adiabatic conditions [J]. Energy Storage Science and Technology, 2022, 11(8): 2411-2417. |
[13] | Rongyang WEI, Tian MAO, Han GAO, Jianren PENG, Jian YANG. Health state estimation of lithium ion battery based on TWP-SVR [J]. Energy Storage Science and Technology, 2022, 11(8): 2585-2599. |
[14] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[15] | Haitao LI, Lingli KONG, Xin ZHANG, Chuanjun YU, Jiwei WANG, Lin XU. The effects of N/P design on the performances of Ni-rich NCM/Gr lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(7): 2040-2045. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||