Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (6): 1847-1853.doi: 10.19799/j.cnki.2095-4239.2022.0186
Previous Articles Next Articles
CHANG Zeyu(), ZHANG Zhiqi, ZHANG Xiaodong, LI Li, YU Yajuan()
Received:
2022-04-02
Revised:
2022-04-27
Online:
2022-06-05
Published:
2022-06-13
Contact:
YU Yajuan
E-mail:745846706@qq.com;04575@bit.edu.cn
CLC Number:
CHANG Zeyu, ZHANG Zhiqi, ZHANG Xiaodong, LI Li, YU Yajuan. A data-driven state of health (SOH) assessment platform for vehicle power batteries[J]. Energy Storage Science and Technology, 2022, 11(6): 1847-1853.
1 | 左培文, 朱培培, 邵丽青. 新能源汽车动力电池产业发展特点与趋势分析[J]. 汽车文摘, 2022(1): 1-7. |
ZUO P W, ZHU P P, SHAO L Q. The development characteristics and trend analysis of power battery industry for new energy vehicles[J]. Automotive Digest, 2022(1): 1-7. | |
2 | 李方方, 张晓龙, 吴怡, 等. 我国动力锂电池行业现状和发展趋势[J]. 交通节能与环保, 2016, 12(3): 14-16. |
LI F F, ZHANG X L, WU Y, et al. Current situation and development trend of power lithium battery industry[J]. Energy Conservation & Environmental Protection in Transportation, 2016, 12(3): 14-16. | |
3 | 张颖. 新能源车渗透率继续提高[J]. 汽车与配件, 2021(14): 4.ZHANG Y. New energy vehicle penetration continues to increase[J]. Automobile & Parts, 2021(14): 4. |
4 | FENG X N, PAN Y, HE X M, et al. Detecting the internal short circuit in large-format lithium-ion battery using model-based fault-diagnosis algorithm[J]. Journal of Energy Storage, 2018, 18: 26-39. |
5 | 熊瑞. 动力电池管理系统核心算法[M]. 北京: 机械工业出版社, 2018: 100-104. |
XIONG R. Core algorithm of battery management system for EVs[M]. Beijing: China Machine Press, 2018: 100-104. | |
6 | GE M F, LIU Y B, JIANG X X, et al. A review on state of health estimations and remaining useful life prognostics of lithium-ion batteries[J]. Measurement, 2021, 174: doi:10.1016/j.measurement.2021.109057. |
7 | 耿萌萌, 范茂松, 杨凯, 等. 基于EIS和神经网络的退役电池SOH快速估计[J]. 储能科学与技术, 2022, 11(2): 673-678. |
GENG M M, FAN M S, YANG K, et al. Fast estimation method for state-of-health of retired batteries based on electrochemical impedance spectroscopy and neural network[J]. Energy Storage Science and Technology, 2022, 11(2): 673-678. | |
8 | 韩云飞, 谢佳, 蔡涛, 等. 结合高斯过程回归与特征选择的锂离子电池容量估计方法[J]. 储能科学与技术, 2021, 10(4): 1432-1438. |
HAN Y F, XIE J, CAI T, et al. Capacity estimation of lithium-ion batteries based on Gaussian process regression and feature selection[J]. Energy Storage Science and Technology, 2021, 10(4): 1432-1438. | |
9 | 任璞, 王顺利, 何明芳, 等. 基于内阻增加和容量衰减双重标定的锂电池健康状态评估[J]. 储能科学与技术, 2021, 10(2): 738-743. |
REN P, WANG S L, HE M F, et al. State of health estimation of Li-ion battery based on dual calibration of internal resistance increasing and capacity fading[J]. Energy Storage Science and Technology, 2021, 10(2): 738-743. | |
10 | 董明, 范文杰, 刘王泽宇, 等. 基于特征频率阻抗的锂离子电池健康状态评估[J/OL]. 中国电机工程学报: 1-11. [2022-04-01]. doi:10.13334/j.0258-8013.pcsee.212036. |
DONG M, FAN W J, LIU Wangzeyu, et al. Health assessment of lithium-ion batteries based on characteristic frequency impedance[J/OL]. Proceedings of the CSEE: 1-11. [2022-04-01]. doi:10.13334/j.0258-8013.pcsee.212036. | |
11 | WANG S L, FERNANDEZ C, YU C M, et al. A novel charged state prediction method of the lithium ion battery packs based on the composite equivalent modeling and improved splice Kalman filtering algorithm[J]. Journal of Power Sources, 2020, 471: doi:10.1016/j.jpowsour.2020.228450. |
12 | 王凡, 史永胜, 刘博亲, 等. 基于注意力改进BiGRU的锂离子电池健康状态估计[J]. 储能科学与技术, 2021, 10(6): 2326-2333. |
WANG F, SHI Y S, LIU B Q, et al. Health state estimation of lithium-ion batteries based on attention augmented BiGRU[J]. Energy Storage Science and Technology, 2021, 10(6): 2326-2333. | |
13 | 张孝远, 张金浩, 蒋亚俊. 基于改进TCN模型的动力电池健康状态评估[J]. 储能科学与技术, 2022, 11(5): 1617-1626. |
ZHANG X Y, ZHANG J H, JIANG Y J. Power battery health evaluation based on improved TCN model[J]. Energy Storage Science and Technology, 2022, 11(5): 1617-1626. | |
14 | KE G L, MENG Q, FINLEY T, et al. Lightgbm: A highly efficient gradient boosting decision tree[J]. Advances in Neural Information Processing systems, 2017, 30. |
15 | MENG Q, KE G L, WANG T F, et al. A communication-efficient parallel algorithm for decision tree[C]//30th Conference on Neural Information Processing Systems (NIPS 2016), 2016. |
16 | ZHANG Z Q, LI L, LI X, et al. State-of-health estimation for the lithium-ion battery based on gradient boosting decision tree with autonomous selection of excellent features[J]. International Journal of Energy Research, 2022, 46(2): 1756-1765. |
17 | LIU D T, PANG J Y, ZHOU J B, et al. Data-driven prognostics for lithium-ion battery based on Gaussian Process Regression[C]// Proceedings of the IEEE 2012 Prognostics and System Health Management Conference, 2012. |
18 | PENNA J A M, NASCIMENTO C L, RODRIGUES L R. Health monitoring and remaining useful life estimation of lithium-ion aeronautical batteries[C]//2012 IEEE Aerospace Conference, 2012. |
19 | 梅雪峰, 赵礼峰. 基于LightGBM的改进表面肌电信号手势识别研究[J]. 计算机与数字工程, 2022, 50(1): 95-99. |
MEI X F, ZHAO L F. Research on improved gesture recognition of surface EMG based on LightGBM[J]. Computer & Digital Engineering, 2022, 50(1): 95-99. | |
20 | 刘兴涛, 刘晓剑, 武骥, 等. 基于曲线压缩与XGBoost算法的锂离子电池SOH估计[J/OL]. 吉林大学学报(工学版): 1-8. [2022-04-13]. doi:10.13229/j.cnki.jdxbgxb20210020. |
LIU X T, LIU X J, WU J, et al. Curve compression and XGBoost based state of health estimation method for lithium-ion battery[J/OL]. Journal of Jilin University (Engineering and Technology Edition): 1-8. [2022-04-13]. doi: 10.13229/j.cnki.jdxbgxb20210020. | |
21 | 刘运鑫, 姚良忠, 周金辉, 等. 基于LSTM的锂电池储能装置SOC与SOH联合预测[J]. 全球能源互联网, 2022, 5(1): 37-45. |
LIU Y X, YAO L Z, ZHOU J H, et al. Joint prediction of state of charge and state of health based on LSTM for lithium-ion batteries[J]. Journal of Global Energy Interconnection, 2022, 5(1): 37-45. |
[1] | ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. |
[2] | Suhang WANG, Jianlin LI, Yaxin LI, Junjie XIONG, Wei ZENG. Research on charging strategy of lithium-ion battery system at low temperature [J]. Energy Storage Science and Technology, 2022, 11(5): 1537-1542. |
[3] | Xiaoyuan ZHANG, Jinhao ZHANG, Yajun JIANG. Power battery health evaluation based on improved TCN model [J]. Energy Storage Science and Technology, 2022, 11(5): 1617-1626. |
[4] | Fang WANG, Zheng WANG, Chunjing LIN, Guozhen ZHANG, Guiping ZHANG, Tianyi MA, Lei LIU, Shiqiang LIU. Analysis on potential causes of safety failure of new energy vehicles [J]. Energy Storage Science and Technology, 2022, 11(5): 1411-1418. |
[5] | Jian HU, Chunjing LIN, Weijian HAO, Tianlei ZHENG. Current status and suggestions for the construction of power battery standard system [J]. Energy Storage Science and Technology, 2022, 11(1): 313-320. |
[6] | Fan WANG, Yongsheng SHI, Boqin LIU, Yujie ZUO, Zheng FU, Jamsher ALI. Health state estimation of lithium-ion batteries based on attention augmented BiGRU [J]. Energy Storage Science and Technology, 2021, 10(6): 2326-2333. |
[7] | Feifei LIU, Rongqing BAO, Xianfu CHENG, Jun LI, Wu QIN, Chaofeng YANG. Review on heat dissipation methods of lithium-ion power battery for vehicles under service conditions [J]. Energy Storage Science and Technology, 2021, 10(6): 2269-2282. |
[8] | Weixia LIU, Xun TIAN, Jiayong XIAO, Wei CHANG, Yuan LI, Liang MAO. Estimation of SOH and remaining life of lithium batteries based on a combination model and long short-term memory [J]. Energy Storage Science and Technology, 2021, 10(2): 689-694. |
[9] | Haimin WANG, Yufei WANG, Feng HU. Thermal management performance of cylindrical power batteries made of graphite paraffin composite phase change materials [J]. Energy Storage Science and Technology, 2021, 10(1): 210-217. |
[10] | Lei GAO, Yufeng MENG, Qibin YAN, Hui YANG. The influence of copper foil appearance quality on Li-ion power battery performance [J]. Energy Storage Science and Technology, 2020, 9(S1): 1-6. |
[11] | Jian SHEN, Bixiong HUANG, Zhaokang XIE, Jiayin LI, Ningning LIU, Zhiqiang JIA. Internal structure layout and optimization design of FSEC racing power battery box [J]. Energy Storage Science and Technology, 2020, 9(S1): 31-38. |
[12] | Chao XU, Liwei LI, Yuxin YANG, Kai WANG. Lithium-ion battery SOH estimation based on improved particle filter [J]. Energy Storage Science and Technology, 2020, 9(6): 1954-1960. |
[13] | Ying HE, Genpeng ZHONG, Yi CHEN. Research on SOC estimation of lithium-ion power battery based on feature combination and stacking fusion ensemble Learning [J]. Energy Storage Science and Technology, 2020, 9(5): 1548-1557. |
[14] | WEI Meng, LI Jiabo, LI Zhongyu, YE Min, XU Xinxin. SOC estimation of Li-ion batteries based on Gaussian process regression and UKF [J]. Energy Storage Science and Technology, 2020, 9(4): 1206-1213. |
[15] | WEI Meng, LI Jiabo, YE Min, GAO Kangping, XU Xinxin. SOC estimation of Li-ion battery based on gaussian mixture regression [J]. Energy Storage Science and Technology, 2020, 9(3): 958-963. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||