Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (6): 1892-1901.doi: 10.19799/j.cnki.2095-4239.2022.0066
Previous Articles Next Articles
ZHANG Ping1(), KANG Libin1(), WANG Mingju3, ZHAO Guang3, LUO Zhenhua3, TANG Kun1, LU Yaxiang2, HU Yongsheng1,2
Received:
2022-02-15
Revised:
2022-03-02
Online:
2022-06-05
Published:
2022-06-13
Contact:
KANG Libin
E-mail:jumping@hinabattery.com;kanglibin@hinabattery.com
CLC Number:
ZHANG Ping, KANG Libin, WANG Mingju, ZHAO Guang, LUO Zhenhua, TANG Kun, LU Yaxiang, HU Yongsheng. Technology feasibility and economic analysis of Na-ion battery energy storage[J]. Energy Storage Science and Technology, 2022, 11(6): 1892-1901.
Table 2
Parameters of electrochemical energy storage system"
参数 | 铅蓄电池 | 磷酸铁锂 | 三元锂电池 | 钠离子电池 | 数据来源 |
---|---|---|---|---|---|
标称储能容量En/kWh | 1000 | 10000 | 10000 | 10000 | 设定值 |
初始容量投资成本CE/(元/kWh) | 500~800 | 1000~1300 | 1200~1600 | 700~900 | [ |
初始功率投资成本CP/(元/kW) | 300~500 | 320~420 | 400~500 | 400~500 | |
单位容量维护成本O&M/% | 4.60 | 3.70 | 5.00 | 3.70 | [ |
循环次数/次 | 3700~4200 | 4000~6000 | 2500~3000 | 4000~5000 | [ |
折现率r/% | 8 | 8 | 8 | 8 | [ |
储能循环效率ηcyc/% | 75~80 | 86~90 | 88~90 | 84~90 | — |
放电深度θDOD/% | 70 | 90 | 100 | 100 | — |
年循环平均衰退率θdeg/(%/a) | 3.60 | 1.50 | 3.60 | 1.50 | [ |
年运行次数n(t)/次 | 365 | 365 | 365 | 365 | 设定值 |
充电电价PC/(元/kWh) | 0.261 | 0.261 | 0.261 | 0.261 | [ |
1 | 张春成,等. 2019年全球电力发展回顾及2020年展望[EB/OL].(2020-07-03)[2021-01-01]. https://power.in-en.com/html/power-2370405.shtml. |
2 | 马哲, 李建武. 中国锂资源供应体系研究: 现状、问题与建议[J]. 中国矿业, 2018, 27(10): 1-7. |
MA Z, LI J W. Analysis of China's lithium resources supply system: Status, issues and suggestions[J]. China Mining Magazine, 2018, 27(10): 1-7. | |
3 | PAN H L, HU Y S, CHEN L Q. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage[J]. Energy & Environmental Science, 2013, 6(8): 2338. |
4 | 胡勇胜, 陆雅翔, 陈立泉. 钠离子电池科学与技术[M]. 北京: 科学出版社, 2020. |
HU Y S, LU Y X, CHEN L Q. Na-ion batteries: Science and technology[M]. Beijing: Science Press, 2020. | |
5 | 容晓晖, 陆雅翔, 戚兴国, 等. 钠离子电池:从基础研究到工程化探索[J]. 储能科学与技术, 2020, 9(2): 515-522. |
RONG X H, LU Y X, QI X G, et al. Na-ion batteries: From fundamental research to engineering exploration[J]. Energy Storage Science and Technology, 2020, 9(2): 515-522. | |
6 | WU E A, KOMPELLA C S, ZHU Z Y, et al. New insights into the interphase between the Na metal anode and sulfide solid-state electrolytes: a joint experimental and computational study[J]. ACS Applied Materials & Interfaces, 2018, 10(12): 10076-10086. |
7 | KIM S W, SEO D H, MA X H, et al. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries[J]. Advanced Energy Materials, 2012, 2(7): 710-721. |
8 | STEVENS D A, DAHN J R. High capacity anode materials for rechargeable sodium-ion batteries[J]. Journal of the Electrochemical Society, 2000, 147(4): 1271. |
9 | PONROUCH A, GOÑI A R, PALACÍN M R. High capacity hard carbon anodes for sodium ion batteries in additive free electrolyte[J]. Electrochemistry Communications, 2013, 27: 85-88. |
10 | SUN N, LIU H, XU B. Facile synthesis of high performance hard carbon anode materials for sodium ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(41): 20560-20566. |
11 | LIU P, LI Y M, HU Y S, et al. A waste biomass derived hard carbon as a high-performance anode material for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(34): 13046-13052. |
12 | 潘福荣, 张建赟, 周子旺, 等. 用户侧电池储能系统的成本效益及投资风险分析[J]. 浙江电力, 2019, 38(5): 43-49. |
PAN F R, ZHANG J Y, ZHOU Z W, et al. Cost-benefit and investment risk analysis of user-side battery energy storage system[J]. Zhejiang Electric Power, 2019, 38(5): 43-49. | |
13 | 林申力, 王子璇. 供电局储能系统经济性分析[J]. 电工技术, 2019(7): 28-32. |
LIN S L, WANG Z X. Economic analysis of energy storage systems invested by a power supply bureau[J]. Electric Engineering, 2019(7): 28-32. | |
14 | 徐若晨, 张江涛, 刘明义, 等. 电化学储能及抽水蓄能全生命周期度电成本分析[J]. 电工电能新技术, 2021, 40(12): 10-18. |
XU R C, ZHANG J T, LIU M Y, et al. Analysis of life cycle cost of electrochemical energy storage and pumped storage[J]. Advanced Technology of Electrical Engineering and Energy, 2021, 40(12): 10-18. | |
15 | 北极星储能网. 2021储能扫描丨储能市场竞争炽热化!储能中标均价1.476元/W·h(附招标年度总表)[EB/OL].(2022-01-14) [2022-01-20].https://chuneng.bjx.com.cn/news/20220114/1199377.shtml. |
16 | 吴福保,杨波,叶季蕾,电力系统储能应用技术[M]. 北京:水利水电出版社, 2014. |
WU F B, YANG B, YE J L. Grid scale energy storage: Systems and applications[M]. Beijing: China Water Power Press, 2014. | |
17 | 傅旭, 李富春, 杨攀峰. 基于全生命周期的各类储能调峰效益比较[J]. 供用电, 2020, 37(7): 88-93, 43. |
FU X, LI F C, YANG P F. Benefits comparison of various energy storage equipment peak regulation based on the whole life cycle[J]. Distribution & Utilization, 2020, 37(7): 88-93, 43. | |
18 | 杨宏基, 周明, 张茗洋, 等. 电力市场下抽水蓄能电站运营策略及效益分析[J]. 华北电力大学学报(自然科学版), 2021, 48(6): 71-80. |
YANG H J, ZHOU M, ZHANG M Y, et al. Operational mechanism and cost-benefit analysis of pumped storage plant in power market environment[J]. Journal of North China Electric Power University (Natural Science Edition), 2021, 48(6): 71-80. | |
19 | 白雪平. 磷酸铁锂电池储能系统的应用[J]. 高科技与产业化, 2016(4): 71-73. |
BAI X P. Application of LFP battery energy storage system[J]. High-Technology & Industrialization, 2016(4): 71-73. | |
20 | 柴明哲, 高赐威, 陈涛, 等. 江苏省工业用户配置储能的经济性研究[J]. 电力需求侧管理, 2021, 23(3): 47-51. |
CHAI M Z, GAO C W, CHEN T, et al. Research on the economics of energy storage allocation for industrial users in Jiangsu province[J]. Power Demand Side Management, 2021, 23(3): 47-51. | |
21 | 方铮, 曹余良, 胡勇胜, 等. 室温钠离子电池技术经济性分析[J]. 储能科学与技术, 2016, 5(2): 149-158. |
FANG Z, CAO Y L, HU Y S, et al. Economic analysis for room-temperature sodium-ion battery technologies[J]. Energy Storage Science and Technology, 2016, 5(2): 149-158. | |
22 | 张文亮, 丘明, 来小康. 储能技术在电力系统中的应用[J]. 电网技术, 2008, 32(7): 1-9. |
ZHANG W L, QIU M, LAI X K. Application of energy storage technologies in power grids[J]. Power System Technology, 2008, 32(7): 1-9. | |
23 | 孟祥飞, 庞秀岚, 崇锋, 等. 电化学储能在电网中的应用分析及展望[J]. 储能科学与技术, 2019, 8(S1): 38-42. |
MENG X F, PANG X L, CHONG F, et al. Application analysis and prospect of electrochemical energy storage in power grid[J]. Energy Storage Science and Technology, 2019, 8(S1): 38-42. | |
24 | 李建林, 杨水丽, 高凯. 大规模储能系统辅助常规机组调频技术分析[J]. 电力建设, 2015, 36(5): 105-110. |
LI J L, YANG S L, GAO K. Frequency modulation technology for conventional units assisted by large scale energy storage system[J]. Electric Power Construction, 2015, 36(5): 105-110. | |
25 | 孙钢虎, 王小辉, 陈远志, 等. 储能联合发电机组调频经济效益分析[J]. 电源学报, 2020, 18(4): 151-156. |
SUN G H, WANG X H, CHEN Y Z, et al. Analysis of economic benefits of frequency modulation by energy storage combined generating units[J]. Journal of Power Supply, 2020, 18(4): 151-156. | |
26 | 李欣然, 黄际元, 陈远扬, 等. 大规模储能电源参与电网调频研究综述[J]. 电力系统保护与控制, 2016, 44(7): 145-153. |
LI X R, HUANG J Y, CHEN Y Y, et al. Review on large-scale involvement of energy storage in power grid fast frequency regulation[J]. Power System Protection and Control, 2016, 44(7): 145-153. | |
27 | 宁阳天, 李相俊, 董德华, 等. 储能系统平抑风光发电出力波动的研究方法综述[J]. 供用电, 2017, 34(4): 2-11. |
NING Y T, LI X J, DONG D H, et al. A review of the research methods of smoothing wind/PV power output with energy storage systems[J]. Distribution & Utilization, 2017, 34(4): 2-11. |
[1] | Huihui YANG, Li ZENG, Bo TANG, Xiaoqing WANG, Yong LU. Experimental study on an EG/paraffin composite thermal storage material and its feasibility for off-peak power heating utilization [J]. Energy Storage Science and Technology, 2022, 11(1): 19-29. |
[2] | Dekun FU, Wenji SONG, Mingbiao CHEN, Ziping FENG. Techno-economic analysis of seasonal cold storage technology and its application in protected agriculture [J]. Energy Storage Science and Technology, 2021, 10(6): 2385-2391. |
[3] | Qihui YU, Li TIAN, Xiaofei LI, Xiaodong LI, Xin TAN, Yeming ZHANG. Compressed air energy storage capacity configuration and economic evaluation considering the uncertainty of wind energy [J]. Energy Storage Science and Technology, 2021, 10(5): 1614-1623. |
[4] | Lin ZHOU, Yang YANG, Yongsheng HU. Failure mechanism of alloy electrodes: Volume change? decomposition of electrolyte? [J]. Energy Storage Science and Technology, 2021, 10(3): 813-820. |
[5] | Lei HOU, Zichi WANG, Yingchao LI, Saihao WANG, Yajie ZHANG, Yusen ZHANG. Analysis and multi-objective optimization of CAES system [J]. Energy Storage Science and Technology, 2021, 10(1): 379-384. |
[6] | Lihui LIU, Yajing MO, Xiaoqin SUN, Jie LI. Thermal storage characteristics and optimization of plate-type phase change energy storage unit [J]. Energy Storage Science and Technology, 2020, 9(6): 1784-1789. |
[7] | FAN Yongsheng, ZHAO Lulu, LIU Qinghua, LEMMON John, MIAO Ping. Economic analysis of flow battery energy storage for wind farm application [J]. Energy Storage Science and Technology, 2020, 9(3): 725-729. |
[8] | RONG Xiaohui, LU Yaxiang, QI Xingguo, ZHOU Quan, KONG Weihe, TANG Kun, CHEN Liquan, HU Yongsheng. Na-ion batteries: From fundamental research to engineering exploration [J]. Energy Storage Science and Technology, 2020, 9(2): 515-522. |
[9] | XING Zuoxia, ZHAO Haichuan, MA Shiping, DAI Junwen, LIU Yuting, SUN Zhenting. Study on key parameters design and economic evaluation of the electric heating and solid sensible heat thermal storage device [J]. Energy Storage Science and Technology, 2019, 8(6): 1211-1216. |
[10] | LIN Junhao, GU Xiongwen, MA Li. Optimal sizing and control of demand-side battery energy storage system [J]. Energy Storage Science and Technology, 2018, 7(1): 90-. |
[11] | YUAN Shuangchen1, CAI Shengxia2, WANG Shouxiang1, HUANG Bibin3. Economic modeling and analysis of user-side electrical/thermal comprehensive energy storage system [J]. Energy Storage Science and Technology, 2017, 6(5): 1099-1104. |
[12] | SUN Yong1, YAN Gangui2, ZHENG Taiyi1, FENG Ke2, YANG Guoxin1, LI Junhui2, WANG Zongbao2. Economic analysis of electrical heating with heat storage using grid integrated wind power [J]. Energy Storage Science and Technology, 2016, 5(4): 532-538. |
[13] | FANG Zheng, CAO Yuliang, HU Yongsheng, CHEN Liquan, HUANG Xuejie. Economic analysis for room-temperature sodium-ion battery technologies [J]. Energy Storage Science and Technology, 2016, 5(2): 149-158. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||