1 |
LI H, HUANG X, CHEN L, et al. A high capacity nano Si composite anode material for lithium rechargeable batteries[J]. Electrochemical and Solid State Letters, 1999, 2(11): doi: 10.1002/chin.200001017.
|
2 |
LIU X H, ZHENG H, ZHONG L, et al. Anisotropic swelling and fracture of silicon nanowires during lithiation[J]. Nano Letters, 2011, 11(8): 3312-3318.
|
3 |
PARK M H, KIM M G, JOO J, et al. Silicon nanotube battery anodes[J]. Nano Letters, 2009, 9(11): 3844-3847.
|
4 |
ZHOU L, ZHANG J, WU Y, et al. Understanding ostwald ripening and surface charging effects in solvothermally-prepared metal oxide-carbon anodes for high performance rechargeable batteries[J]. Advanced Energy Materials, 2019, doi: 10.1002/aenm.201902194.
|
5 |
MAGASINSKI A, DIXON P, HERTZBERG B, et al. High-performance lithium-ion anodes using a hierarchical bottom-up approach[J]. Nature Materials, 2010, 9(4): 353-358.
|
6 |
ZHOU L, CAO Z, WAHYUDI W, et al. Electrolyte engineering enables high stability and capacity alloying anodes for sodium and potassium ion batteries[J]. ACS Energy Letters, 2020, 5(3): 766-776.
|
7 |
AURBACH D, GAMOLSKY K, MARKOVSKY B, et al. On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries[J]. Electrochimica Acta, 2002, 47(9): 1423-1439.
|
8 |
CHEN L, WANG K, XIE X, et al. Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries[J]. Journal of Power Sources, 2007, 174(2): 538-543.
|
9 |
ETACHERI V, HAIK O, GOFFER Y, et al. Effect of fluoroethylene carbonate (FEC) on the performance and surface chemistry of Si-nanowire Li-ion battery anodes[J]. Langmuir, 2012, 28(1): 965-976.
|
10 |
HAN G B, RYOU M H, CHO K Y, et al. Effect of succinic anhydride as an electrolyte additive on electrochemical characteristics of silicon thin-film electrode[J]. Journal of Power Sources, 2010, 195(11): 3709-3714.
|
11 |
KIM K, MA H, PARK S, et al. Electrolyte-additive-driven interfacial engineering for high-capacity electrodes in lithium-ion batteries: Promise and challenges[J]. ACS Energy Letters, 2020, 5(5): 1537-1553.
|
12 |
CHANG Z H, WANG J T, WU Z H, et al. The electrochemical performance of silicon nanoparticles in concentrated electrolyte[J]. ChemSusChem, 2018, 11(11): 1787-1796.
|
13 |
CHEN J, FAN X, LI Q, et al. Electrolyte design for LiF-rich solid-electrolyte interfaces to enable high-performance microsized alloy anodes for batteries[J]. Nature Energy, 2020, 5: 386-397.
|
14 |
ZHANG N, SUN C C, HUANG Y Q, et al. Tuning electrolyte enables microsized Sn as an advanced anode for Li-ion batteries[J]. Journal of Materials Chemistry A, 2021, 9(3): 1812-1821.
|
15 |
CHEN J, LI Q, POLLARD T P, et al. Electrolyte design for Li metal-free Li batteries[J]. Materials Today, 2020, 39: 118-126.
|
16 |
CHAE S, KWAK W J, HAN K S, et al. Rational design of electrolytes for long-term cycling of Si anodes over a wide temperature range[J]. ACS Energy Letters, 2021, 6(2): 387-394.
|
17 |
YANG G, FRISCO S, TAO R M, et al. Robust solid/electrolyte interphase (SEI) formation on Si anodes using glyme-based electrolytes[J]. ACS Energy Letters, 2021: 1684-1693.
|
18 |
ZHANG B, ROUSSE G, FOIX D, et al. Microsized Sn as advanced anodes in glyme-based electrolyte for Na-ion batteries[J]. Advanced Materials, 2016, 28(44): 9824-9830.
|
19 |
HUANG J Q, GUO X Y, DU X Q, et al. Nanostructures of solid electrolyte interphases and their consequences for microsized Sn anodes in sodium ion batteries[J]. Energy & Environmental Science, 2019, 12(5): 1550-1557.
|
20 |
WANG C, WANG L, LI F, et al. Bulk bismuth as a high-capacity and ultralong cycle-life anode for sodium-ion batteries by coupling with glyme-based electrolytes[J]. Advanced Materials, 2017, 29(35): doi: 10.1002/adma.201702212.
|
21 |
WANG C, DU D, SONG M, et al. A high-power Na3V2(PO4)3-Bi sodium-ion full battery in a wide temperature range[J]. Advanced Energy Materials, 2019, 9(16): doi: 10.1002/aenm.201900022.
|
22 |
SHADIKE Z, LEE H, BORODIN O, et al. Identification of LiH and nanocrystalline LiF in the solid-electrolyte interphase of lithium metal anodes[J]. Nature Nanotechnology, 2021: 1-6.
|
23 |
DOI K, YAMADA Y, OKOSHI M, et al. Reversible sodium metal electrodes: Is fluorine an essential interphasial component?[J]. Angewante Chemie-Internaitional Edition, 2019, 58(24): 8024-8028.
|
24 |
YAMADA Y, WANG J, KO S, et al. Advances and issues in developing salt-concentrated battery electrolytes[J]. Nature Energy, 2019, 4(4): 269-280.
|
25 |
FAN X, JI X, CHEN L, et al. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents[J]. Nature Energy, 2019, 4(10): 882-890.
|
26 |
LI Y Q, YANG Y, LU Y X, et al. Ultralow-concentration electrolyte for Na-ion batteries[J]. ACS Energy Letters, 2020, 5(4): 1156-1158.
|
27 |
JIN Y, XU Y B, LE P M L, et al. Highly reversible sodium ion batteries enabled by stable electrolyte-electrode interphases[J]. ACS Energy Letters, 2020, 5(10): 3212-3220.
|
28 |
YAO Y X, CHEN X, YAN C, et al. Regulating interfacial chemistry in lithium-ion batteries by a weakly solvating electrolyte[J]. Angewante Chemie-International Edition, 2021, 60(8): 4090-4097.
|
29 |
BOEBINGER M G, YAREMA O, YAREMA M, et al. Spontaneous and reversible hollowing of alloy anode nanocrystals for stable battery cycling[J]. Nature Nanotechnology, 2020, 15(6): 475-481.
|
30 |
ZHOU M, BAI P, JI X, et al. Electrolytes and interphases in potassium ion batteries[J]. Advanced Materials, 2021, 33: 2003741-2003762.
|