Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (3): 813-820.doi: 10.19799/j.cnki.2095-4239.2021.0129
Previous Articles Next Articles
Lin ZHOU(
), Yang YANG, Yongsheng HU(
)
Received:2021-03-29
Revised:2021-04-18
Online:2021-05-05
Published:2021-04-30
Contact:
Yongsheng HU
E-mail:lzhou@ciac.ac.cn;yshu@iphy.ac.cn
CLC Number:
Lin ZHOU, Yang YANG, Yongsheng HU. Failure mechanism of alloy electrodes: Volume change? decomposition of electrolyte?[J]. Energy Storage Science and Technology, 2021, 10(3): 813-820.
| 1 | LI H, HUANG X, CHEN L, et al. A high capacity nano Si composite anode material for lithium rechargeable batteries[J]. Electrochemical and Solid State Letters, 1999, 2(11): doi: 10.1002/chin.200001017. |
| 2 | LIU X H, ZHENG H, ZHONG L, et al. Anisotropic swelling and fracture of silicon nanowires during lithiation[J]. Nano Letters, 2011, 11(8): 3312-3318. |
| 3 | PARK M H, KIM M G, JOO J, et al. Silicon nanotube battery anodes[J]. Nano Letters, 2009, 9(11): 3844-3847. |
| 4 | ZHOU L, ZHANG J, WU Y, et al. Understanding ostwald ripening and surface charging effects in solvothermally-prepared metal oxide-carbon anodes for high performance rechargeable batteries[J]. Advanced Energy Materials, 2019, doi: 10.1002/aenm.201902194. |
| 5 | MAGASINSKI A, DIXON P, HERTZBERG B, et al. High-performance lithium-ion anodes using a hierarchical bottom-up approach[J]. Nature Materials, 2010, 9(4): 353-358. |
| 6 | ZHOU L, CAO Z, WAHYUDI W, et al. Electrolyte engineering enables high stability and capacity alloying anodes for sodium and potassium ion batteries[J]. ACS Energy Letters, 2020, 5(3): 766-776. |
| 7 | AURBACH D, GAMOLSKY K, MARKOVSKY B, et al. On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries[J]. Electrochimica Acta, 2002, 47(9): 1423-1439. |
| 8 | CHEN L, WANG K, XIE X, et al. Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries[J]. Journal of Power Sources, 2007, 174(2): 538-543. |
| 9 | ETACHERI V, HAIK O, GOFFER Y, et al. Effect of fluoroethylene carbonate (FEC) on the performance and surface chemistry of Si-nanowire Li-ion battery anodes[J]. Langmuir, 2012, 28(1): 965-976. |
| 10 | HAN G B, RYOU M H, CHO K Y, et al. Effect of succinic anhydride as an electrolyte additive on electrochemical characteristics of silicon thin-film electrode[J]. Journal of Power Sources, 2010, 195(11): 3709-3714. |
| 11 | KIM K, MA H, PARK S, et al. Electrolyte-additive-driven interfacial engineering for high-capacity electrodes in lithium-ion batteries: Promise and challenges[J]. ACS Energy Letters, 2020, 5(5): 1537-1553. |
| 12 | CHANG Z H, WANG J T, WU Z H, et al. The electrochemical performance of silicon nanoparticles in concentrated electrolyte[J]. ChemSusChem, 2018, 11(11): 1787-1796. |
| 13 | CHEN J, FAN X, LI Q, et al. Electrolyte design for LiF-rich solid-electrolyte interfaces to enable high-performance microsized alloy anodes for batteries[J]. Nature Energy, 2020, 5: 386-397. |
| 14 | ZHANG N, SUN C C, HUANG Y Q, et al. Tuning electrolyte enables microsized Sn as an advanced anode for Li-ion batteries[J]. Journal of Materials Chemistry A, 2021, 9(3): 1812-1821. |
| 15 | CHEN J, LI Q, POLLARD T P, et al. Electrolyte design for Li metal-free Li batteries[J]. Materials Today, 2020, 39: 118-126. |
| 16 | CHAE S, KWAK W J, HAN K S, et al. Rational design of electrolytes for long-term cycling of Si anodes over a wide temperature range[J]. ACS Energy Letters, 2021, 6(2): 387-394. |
| 17 | YANG G, FRISCO S, TAO R M, et al. Robust solid/electrolyte interphase (SEI) formation on Si anodes using glyme-based electrolytes[J]. ACS Energy Letters, 2021: 1684-1693. |
| 18 | ZHANG B, ROUSSE G, FOIX D, et al. Microsized Sn as advanced anodes in glyme-based electrolyte for Na-ion batteries[J]. Advanced Materials, 2016, 28(44): 9824-9830. |
| 19 | HUANG J Q, GUO X Y, DU X Q, et al. Nanostructures of solid electrolyte interphases and their consequences for microsized Sn anodes in sodium ion batteries[J]. Energy & Environmental Science, 2019, 12(5): 1550-1557. |
| 20 | WANG C, WANG L, LI F, et al. Bulk bismuth as a high-capacity and ultralong cycle-life anode for sodium-ion batteries by coupling with glyme-based electrolytes[J]. Advanced Materials, 2017, 29(35): doi: 10.1002/adma.201702212. |
| 21 | WANG C, DU D, SONG M, et al. A high-power Na3V2(PO4)3-Bi sodium-ion full battery in a wide temperature range[J]. Advanced Energy Materials, 2019, 9(16): doi: 10.1002/aenm.201900022. |
| 22 | SHADIKE Z, LEE H, BORODIN O, et al. Identification of LiH and nanocrystalline LiF in the solid-electrolyte interphase of lithium metal anodes[J]. Nature Nanotechnology, 2021: 1-6. |
| 23 | DOI K, YAMADA Y, OKOSHI M, et al. Reversible sodium metal electrodes: Is fluorine an essential interphasial component?[J]. Angewante Chemie-Internaitional Edition, 2019, 58(24): 8024-8028. |
| 24 | YAMADA Y, WANG J, KO S, et al. Advances and issues in developing salt-concentrated battery electrolytes[J]. Nature Energy, 2019, 4(4): 269-280. |
| 25 | FAN X, JI X, CHEN L, et al. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents[J]. Nature Energy, 2019, 4(10): 882-890. |
| 26 | LI Y Q, YANG Y, LU Y X, et al. Ultralow-concentration electrolyte for Na-ion batteries[J]. ACS Energy Letters, 2020, 5(4): 1156-1158. |
| 27 | JIN Y, XU Y B, LE P M L, et al. Highly reversible sodium ion batteries enabled by stable electrolyte-electrode interphases[J]. ACS Energy Letters, 2020, 5(10): 3212-3220. |
| 28 | YAO Y X, CHEN X, YAN C, et al. Regulating interfacial chemistry in lithium-ion batteries by a weakly solvating electrolyte[J]. Angewante Chemie-International Edition, 2021, 60(8): 4090-4097. |
| 29 | BOEBINGER M G, YAREMA O, YAREMA M, et al. Spontaneous and reversible hollowing of alloy anode nanocrystals for stable battery cycling[J]. Nature Nanotechnology, 2020, 15(6): 475-481. |
| 30 | ZHOU M, BAI P, JI X, et al. Electrolytes and interphases in potassium ion batteries[J]. Advanced Materials, 2021, 33: 2003741-2003762. |
| [1] | Yingwei PEI, Hong ZHANG, Xinghui WANG. Recent advances in the electrolytes of rechargeable zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2075-2082. |
| [2] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
| [3] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
| [4] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
| [5] | LI Yitao, SHEN Kaier, PANG Quanquan. Advance in organics enhanced sulfide-based solid-state batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1902-1918. |
| [6] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
| [7] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
| [8] | Maolin FANG, Ying ZHANG, Lin QIAO, Shumin LIU, Zhongqi CAO, Huamin ZHANG, Xiangkun MA. Research progress of iron-chromium flow batteries technology [J]. Energy Storage Science and Technology, 2022, 11(5): 1358-1367. |
| [9] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
| [10] | Zhicheng CHEN, Zongxu LI, Ling CAI, Yisi LIU. Development status and future prospects of flexible metal-air batteries [J]. Energy Storage Science and Technology, 2022, 11(5): 1401-1410. |
| [11] | Liang FANG, Kai ZHANG, Limin ZHOU. Recent advances and prospects of electrolyte for aluminum ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1236-1245. |
| [12] | Xinyi WANG, Weijie LI, Chao HAN, Huakun LIU, Shixue DOU. Challenges and optimization strategies of the anode of aqueous zinc-ion battery [J]. Energy Storage Science and Technology, 2022, 11(4): 1211-1225. |
| [13] | Xingxing WANG, Ziyu SONG, Hao WU, Wenfang FENG, Zhibin ZHOU, Heng ZHANG. Advances in conducting lithium salts for solid polymer electrolytes [J]. Energy Storage Science and Technology, 2022, 11(4): 1226-1235. |
| [14] | Ying TAO, Lingfei ZHAO, Yunxiao WANG, Yuliang CAO, Shulei CHOU. Stabilization of sodium metal anodes by dual-salt high concentration electrolyte [J]. Energy Storage Science and Technology, 2022, 11(4): 1103-1109. |
| [15] | Suting WENG, Zepeng LIU, Gaojing YANG, Simeng ZHANG, Xiao ZHANG, Qiu FANG, Yejing LI, Zhaoxiang WANG, Xuefeng WANG, Liquan CHEN. Cryogenic electron microscopy (cryo-EM) characterizing beam-sensitive materials in lithium metal batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 760-780. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||