Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (6): 1919-1933.doi: 10.19799/j.cnki.2095-4239.2022.0204
Previous Articles Next Articles
ZHANG Hong1(), ZHANG Yang1, ZHAO Yao1, WANG Jiulin1,2()
Received:
2022-04-14
Revised:
2022-05-07
Online:
2022-06-05
Published:
2022-06-13
Contact:
WANG Jiulin
E-mail:zh120110910080@sjtu.edu.cn;wangjiulin@sjtu.edu.cn
CLC Number:
ZHANG Hong, ZHANG Yang, ZHAO Yao, WANG Jiulin. Research progress of sulfur cathode in solid-solid conversion reaction[J]. Energy Storage Science and Technology, 2022, 11(6): 1919-1933.
1 | ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657. |
2 | WINTER M, BARNETT B, XU K. Before Li ion batteries[J]. Chemical Reviews, 2018, 118(23): 11433-11456. |
3 | LI W D, SONG B H, MANTHIRAM A. High-voltage positive electrode materials for lithium-ion batteries[J]. Chemical Society Reviews, 2017, 46(10): 3006-3059. |
4 | DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935. |
5 | MANTHIRAM A, FU Y Z, CHUNG S H, et al. Rechargeable lithium-sulfur batteries[J]. Chemical Reviews, 2014, 114(23): 11751-11787. |
6 | WILD M, O'NEILL L, ZHANG T, et al. Lithium sulfur batteries, a mechanistic review [J]. Energy & Environmental Science, 2015, 8(12): 3477-3494. |
7 | ZHAO Q, ZHENG J X, ARCHER L. Interphases in lithium-sulfur batteries: Toward deployable devices with competitive energy density and stability[J]. ACS Energy Letters, 2018, 3(9): 2104-2113. |
8 | MANTHIRAM A, FU Y Z, SU Y S. Challenges and prospects of lithium-sulfur batteries[J]. Accounts of Chemical Research, 2013, 46(5): 1125-1134. |
9 | FANG R P, ZHAO S Y, SUN Z H, et al. More reliable lithium-sulfur batteries: Status, solutions and prospects[J]. Advanced Materials, 2017, 29(48): doi: 10.1002/adma.201606823. |
10 | PENG H J, HUANG J Q, CHENG X B, et al. Review on high-loading and high-energy lithium-sulfur batteries[J]. Advanced Energy Materials, 2017, 7(24): doi: 10.1002/aenm.201700260. |
11 | LI Z, ZHANG J T, GUAN B Y, et al. A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium-sulfur batteries[J]. Nature Communications, 2016, 7: 13065. |
12 | 柯承志, 肖本胜, 李苗, 等. 电极材料储锂行为及其机制的原位透射电镜研究进展[J]. 储能科学与技术, 2021, 10(4): 1219-1236. |
KE C Z, XIAO B S, LI M, et al. Research progress in understanding of lithium storage behavior and reaction mechanism of electrode materials through in situ transmission electron microscopy[J]. Energy Storage Science and Technology, 2021, 10(4): 1219-1236. | |
13 | ZHANG X, YANG Y A, ZHOU Z. Towards practical lithium-metal anodes[J]. Chemical Society Reviews, 2020, 49(10): 3040-3071. |
14 | WANG J L, YANG J, XIE J Y, et al. Sulfur-carbon nano-composite as cathode for rechargeable lithium battery based on gel electrolyte[J]. Electrochemistry Communications, 2002, 4(6): 499-502. |
15 | JI X L, LEE K T, NAZAR L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature Materials, 2009, 8(6): 500-506. |
16 | FANG R P, XU J T, WANG D W. Covalent fixing of sulfur in metal-sulfur batteries[J]. Energy & Environmental Science, 2020, 13(2): 432-471. |
17 | ZHANG X Y, CHEN K, SUN Z H, et al. Structure-related electrochemical performance of organosulfur compounds for lithium-sulfur batteries[J]. Energy & Environmental Science, 2020, 13(4): 1076-1095. |
18 | REN W C, MA W, ZHANG S F, et al. Recent advances in shuttle effect inhibition for lithium sulfur batteries[J]. Energy Storage Materials, 2019, 23: 707-732. |
19 | YIM T, PARK M S, YU J S, et al. Effect of chemical reactivity of polysulfide toward carbonate-based electrolyte on the electrochemical performance of Li-S batteries[J]. Electrochimica Acta, 2013, 107: 454-460. |
20 | YANG H J, CHEN J H, YANG J, et al. Prospect of sulfurized pyrolyzed poly(acrylonitrile) (S@pPAN) cathode materials for rechargeable lithium batteries[J]. Angewandte Chemie International Edition, 2020, 59(19): 7306-7318. |
21 | MARKEVICH E, SALITRA G, TALYOSEF Y, et al. Review-on the mechanism of quasi-solid-state lithiation of sulfur encapsulated in microporous carbons: Is the existence of small sulfur molecules necessary?[J]. Journal of the Electrochemical Society, 2016, 164(1): A6244-A6253. |
22 | CHEN W J, LI B Q, ZHAO C X, et al. Electrolyte regulation towards stable lithium-metal anodes in lithium-sulfur batteries with sulfurized polyacrylonitrile cathodes[J]. Angewandte Chemie International Edition, 2020, 59(27): 10732-10745. |
23 | WANG J, YANG J, XIE J, et al. A novel conductive polymer-sulfur composite cathode material for rechargeable lithium batteries[J]. Advanced Materials, 2002, 14(13/14): 963-965. |
24 | HOOD Z D, WANG H, LI Y C, et al. The "filler effect": A study of solid oxide fillers with β-Li3PS4 for lithium conducting electrolytes[J]. Solid State Ionics, 2015, 283: 75-80. |
25 | NAGAO M, HAYASHI A, TATSUMISAGO M, et al. Li2S nanocomposites underlying high-capacity and cycling stability in all-solid-state lithium-sulfur batteries[J]. Journal of Power Sources, 2015, 274: 471-476. |
26 | YAO X Y, HUANG N, HAN F D, et al. High-performance all-solid-state lithium-sulfur batteries enabled by amorphous sulfur-coated reduced graphene oxide cathodes[J]. Advanced Energy Materials, 2017, 7(17): doi: 10.1002/aenm.201602923. |
27 | 陆敬予, 柯承志, 龚正良, 等. 原位表征技术在全固态锂电池中的应用[J]. 物理学报, 2021, 70(19): 236-262. |
LU J Y, KE C Z, GONG Z L, et al. Application of in situ characterization techniques in all-solid-state lithium batteries[J]. Acta Physica Sinica, 2021, 70(19): 236-262. | |
28 | PANG Q, KUNDU D P, CUISINIER M, et al. Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries[J]. Nature Communications, 2014, 5: 4759. |
29 | LI X, YUAN L X, LIU D Z, et al. Solid/quasi-solid phase conversion of sulfur in lithium-sulfur battery[J]. Small, 2022: doi: 10.1002/smll.202106970. |
30 | ZHANG B, QIN X, LI G R, et al. Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres[J]. Energy & Environmental Science, 2010, 3(10): 1531. |
31 | XIN S, GU L, ZHAO N H, et al. Smaller sulfur molecules promise better lithium-sulfur batteries[J]. Journal of the American Chemical Society, 2012, 134(45): 18510-18513. |
32 | LI Z, YUAN L X, YI Z Q, et al. Insight into the electrode mechanism in lithium-sulfur batteries with ordered microporous carbon confined sulfur as the cathode[J]. Advanced Energy Materials, 2014, 4(7): doi: 10.1002/aenm.201301473. |
33 | MARKEVICH E, SALITRA G, ROSENMAN A, et al. The effect of a solid electrolyte interphase on the mechanism of operation of lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2015, 3(39): 19873-19883. |
34 | MEYER B. Elemental sulfur[J]. Chemical Reviews, 1976, 76(3): 367-388. |
35 | BORCHARDT L, OSCHATZ M, KASKEL S. Carbon materials for lithium sulfur batteries—ten critical questions[J]. Chemistry - A European Journal, 2016, 22(22): 7324-7351. |
36 | HU L, LU Y, LI X N, et al. Optimization of microporous carbon structures for lithium-sulfur battery applications in carbonate-based electrolyte[J]. Small, 2017, 13(11): doi: 10.1002/smll.201603533. |
37 | MARKEVICH E, SALITRA G, AURBACH D. Fluoroethylene carbonate as an important component for the formation of an effective solid electrolyte interphase on anodes and cathodes for advanced Li-ion batteries[J]. ACS Energy Letters, 2017, 2(6): 1337-1345. |
38 | XU Y H, WEN Y, ZHU Y J, et al. Confined sulfur in microporous carbon renders superior cycling stability in Li/S batteries[J]. Advanced Functional Materials, 2015, 25(27): 4312-4320. |
39 | WANG L N, LIN Y X, DECARLO S, et al. Compositions and formation mechanisms of solid-electrolyte interphase on microporous carbon/sulfur cathodes[J]. Chemistry of Materials, 2020, 32(9): 3765-3775. |
40 | WANG J, YANG J, WAN C, et al. Sulfur composite cathode materials for rechargeable lithium batteries[J]. Advanced Functional Materials, 2003, 13(6): 487-492. |
41 | GUO J C, YANG Z C, YU Y C, et al. Lithium-sulfur battery cathode enabled by lithium-nitrile interaction[J]. Journal of the American Chemical Society, 2013, 135(2): 763-767. |
42 | FANOUS J, WEGNER M, GRIMMINGER J, et al. Structure-related electrochemistry of sulfur-poly(acrylonitrile) composite cathode materials for rechargeable lithium batteries[J]. Chemistry of Materials, 2011, 23(22): 5024-5028. |
43 | WEI S Y, MA L, HENDRICKSON K E, et al. Metal-sulfur battery cathodes based on PAN-sulfur composites[J]. Journal of the American Chemical Society, 2015, 137(37): 12143-12152. |
44 | ZHANG S. Understanding of sulfurized polyacrylonitrile for superior performance lithium/sulfur battery[J]. Energies, 2014, 7(7): 4588-4600. |
45 | MUKKABLA R, BUCHMEISER M R. Cathode materials for lithium-sulfur batteries based on sulfur covalently bound to a polymeric backbone[J]. Journal of Materials Chemistry A, 2020, 8(11): 5379-5394. |
46 | YANG H J, LI Q Y, GUO C, et al. Safer lithium-sulfur battery based on nonflammable electrolyte with sulfur composite cathode[J]. Chemical Communications (Cambridge, England), 2018, 54(33): 4132-4135. |
47 | YANG H J, NAVEED A, LI Q Y, et al. Lithium sulfur batteries with compatible electrolyte both for stable cathode and dendrite-free anode[J]. Energy Storage Materials, 2018, 15: 299-307. |
48 | WANG W X, CAO Z, ELIA G A, et al. Recognizing the mechanism of sulfurized polyacrylonitrile cathode materials for Li-S batteries and beyond in Al-S batteries[J]. ACS Energy Letters, 2018, 3(12): 2899-2907. |
49 | JIN Z Q, LIU Y G, WANG W K, et al. A new insight into the lithium storage mechanism of sulfurized polyacrylonitrile with no soluble intermediates[J]. Energy Storage Materials, 2018, 14: 272-278. |
50 | WANG X F, QIAN Y M, WANG L N, et al. Sulfurized polyacrylonitrile cathodes with high compatibility in both ether and carbonate electrolytes for ultrastable lithium-sulfur batteries[J]. Advanced Functional Materials, 2019, 29(39): doi: 10.1002/adfm. 201902929. |
51 | DUAN B C, WANG W K, WANG A B, et al. Carbyne polysulfide as a novel cathode material for lithium/sulfur batteries[J]. Journal of Materials Chemistry A, 2013, 1(42): 13261. |
52 | DU H P, ZHANG Z H, HE J J, et al. A delicately designed sulfide graphdiyne compatible cathode for high-performance lithium/magnesium-sulfur batteries[J]. Small, 2017, 13(44): doi: 10.1002/smll.201702277. |
53 | LI Z, ZHANG J T, WU H B, et al. An improved Li-SeS2 battery with high energy density and long cycle life[J]. Advanced Energy Materials, 2017, 7(15): doi: 10.1002/aenm.201700281. |
54 | XU G L, MA T Y, SUN C J, et al. Insight into the capacity fading mechanism of amorphous Se2S5 confined in micro/mesoporous carbon matrix in ether-based electrolytes[J]. Nano Letters, 2016, 16(4): 2663-2673. |
55 | ZHANG J T, HU H, LI Z, et al. Double-shelled nanocages with cobalt hydroxide inner shell and layered double hydroxides outer shell as high-efficiency polysulfide mediator for lithium-sulfur batteries[J]. Angewandte Chemie International Edition, 2016, 55(12): 3982-3986. |
56 | XU K L, LIU X J, LIANG J W, et al. Manipulating the redox kinetics of Li-S chemistry by tellurium doping for improved Li-S batteries[J]. ACS Energy Letters, 2018, 3(2): 420-427. |
57 | LI X N, LIANG J W, ZHANG K L, et al. Amorphous S-rich S1– xSex/C (x≤0.1) composites promise better lithium-sulfur batteries in a carbonate-based electrolyte[J]. Energy & Environmental Science, 2015, 8(11): 3181-3186. |
58 | ZENG L C, YAO Y, SHI J N, et al. A flexible S1- xSex@porous carbon nanofibers (x≤0.1) thin film with high performance for Li-S batteries and room-temperature Na-S batteries[J]. Energy Storage Materials, 2016, 5: 50-57. |
59 | 王久林. 锂硫二次电池之我见[J]. 储能科学与技术, 2020, 9(1): 1-4. |
WANG Jiulin. The opinions for lithium sulfur battery[J]. Energy Storage Science and Technology, 2020, 9(1): 1-4. | |
60 | SUN F G, ZHANG B, TANG H, et al. Heteroatomic TexS1- x molecule/C nanocomposites as stable cathode materials in carbonate-based electrolytes for lithium-chalcogen batteries[J]. Journal of Materials Chemistry A, 2018, 6(21): 10104-10110. |
61 | LIN Z, LIU Z C, FU W J, et al. Lithium polysulfidophosphates: A family of lithium-conducting sulfur-rich compounds for lithium-sulfur batteries[J]. Angewandte Chemie, 2013, 125(29): 7608-7611. |
62 | TANIBATA N, TSUKASAKI H, DEGUCHI M, et al. A novel discharge-charge mechanism of a S-P2S5 composite electrode without electrolytes in all-solid-state Li/S batteries[J]. Journal of Materials Chemistry A, 2017, 5(22): 11224-11228. |
63 | YE H L, MA L, ZHOU Y, et al. Amorphous MoS3 as the sulfur-equivalent cathode material for room-temperature Li-S and Na-S batteries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(50): 13091-13096. |
64 | LI X N, LIANG J W, LI W H, et al. Stabilizing sulfur cathode in carbonate and ether electrolytes: excluding long-chain lithium polysulfide formation and switching lithiation/delithiation route[J]. Chemistry of Materials, 2019, 31(6): 2002-2009. |
65 | SAKUDA A, OHARA K, FUKUDA K, et al. Amorphous metal polysulfides: Electrode materials with unique insertion/extraction reactions[J]. Journal of the American Chemical Society, 2017, 139(26): 8796-8799. |
66 | SAKUDA A, TAGUCHI N, TAKEUCHI T, et al. Amorphous niobium sulfides as novel positive-electrode materials[J]. ECS Electrochemistry Letters, 2014, 3(7): A79-A81. |
67 | LUO C, ZHU Y J, WEN Y, et al. Carbonized polyacrylonitrile-stabilized SeSx cathodes for long cycle life and high power density lithium ion batteries[J]. Advanced Functional Materials, 2014, 24(26): 4082-4089. |
68 | LI Z, ZHANG J T, LU Y, et al. A pyrolyzed polyacrylonitrile/selenium disulfide composite cathode with remarkable lithium and sodium storage performances[J]. Science Advances, 2018, 4(6): eaat1687. |
69 | JIANG M, WANG K L, GAO S, et al. Selenium as extra binding site for sulfur species in sulfurized polyacrylonitrile cathodes for high capacity lithium-sulfur batteries[J]. Chem Electro Chem, 2019, 6(5): 1365-1370. |
70 | ZHU T C, PANG Y, WANG Y G, et al. S0.87Se0.13/CPAN composites as high capacity and stable cycling performance cathode for lithium sulfur battery[J]. Electrochimica Acta, 2018, 281: 789-795. |
71 | ZHANG W, LI S P, WANG L H, et al. Insight into sulfur-rich selenium sulfide/pyrolyzed polyacrylonitrile cathodes for Li-S batteries[J]. Sustainable Energy & Fuels, 2020, 4(7): 3588-3596. |
72 | CHEN X, PENG L F, WANG L H, et al. Ether-compatible sulfurized polyacrylonitrile cathode with excellent performance enabled by fast kinetics via selenium doping[J]. Nature Communications, 2019, 10: 1021. |
73 | LI S P, HAN Z L, HU W, et al. Manipulating kinetics of sulfurized polyacrylonitrile with tellurium as eutectic accelerator to prevent polysulfide dissolution in lithium-sulfur battery under dissolution-deposition mechanism[J]. Nano Energy, 2019, 60: 153-161. |
74 | HE B, RAO Z X, CHENG Z X, et al. Rationally design a sulfur cathode with solid-phase conversion mechanism for high cycle-stable Li-S batteries[J]. Advanced Energy Materials, 2021, 11(14): doi: 10.1002/aenm.202003690. |
75 | KOBAYASHI T, IMADE Y, SHISHIHARA D, et al. All solid-state battery with sulfur electrode and thio-LISICON electrolyte[J]. Journal of Power Sources, 2008, 182(2): 621-625. |
76 | 张桥保, 龚正良, 杨勇. 硫化物固态电解质材料界面及其表征的研究进展[J]. 物理学报, 2020, 69(22): 228803. |
ZHANG Q B, GONG Z L, YANG Y. Advance in interface and characterizations of sulfide solid electrolyte materials[J]. Acta Physica Sinica, 2020, 69(22): 228803. | |
77 | NAGAO M, HAYASHI A, TATSUMISAGO M. Fabrication of favorable interface between sulfide solid electrolyte and Li metal electrode for bulk-type solid-state Li/S battery[J]. Electrochemistry Communications, 2012, 22: 177-180. |
78 | NAGAO M, HAYASHI A, TATSUMISAGO M. Sulfur-carbon composite electrode for all-solid-state Li/S battery with Li2S-P2S5 solid electrolyte[J]. Electrochimica Acta, 2011, 56(17): 6055-6059. |
79 | NAGAO M, HAYASHI A, TATSUMISAGO M. Electrochemical performance of all-solid-state Li/S batteries with sulfur-based composite electrodes prepared by mechanical milling at high temperature[J]. Energy Technology, 2013, 1(2/3): 186-192. |
80 | NAGAO M, IMADE Y, NARISAWA H, et al. All-solid-state Li-sulfur batteries with mesoporous electrode and thio-LISICON solid electrolyte[J]. Journal of Power Sources, 2013, 222: 237-242. |
81 | ZHANG Q, HUANG N, HUANG Z, et al. CNTs@S composite as cathode for all-solid-state lithium-sulfur batteries with ultralong cycle life[J]. Journal of Energy Chemistry, 2020, 40: 151-155. |
82 | XU R C, XIA X H, WANG X L, et al. Tailored Li2S-P2S5 glass-ceramic electrolyte by MoS2 doping, possessing high ionic conductivity for all-solid-state lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2017, 5(6): 2829-2834. |
83 | XU R C, XIA X H, LI S H, et al. All-solid-state lithium-sulfur batteries based on a newly designed Li7P2.9Mn0.1S10.7I0.3 superionic conductor[J]. Journal of Materials Chemistry A, 2017, 5(13): 6310-6317. |
84 | KIM S, OGUCHI H, TOYAMA N, et al. A complex hydride lithium superionic conductor for high-energy-density all-solid-state lithium metal batteries[J]. Nature Communications, 2019, 10: 1081. |
85 | SHEN C, XIE J X, ZHANG M, et al. A Li-Li2S4 battery with improved discharge capacity and cycle life at low electrolyte/sulfur ratios[J]. Journal of Power Sources, 2019, 414: 412-419. |
86 | PANG Q, SHYAMSUNDER A, NARAYANAN B, et al. Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li-S batteries[J]. Nature Energy, 2018, 3(9): 783-791. |
87 | WANG H, ADAMS B D, PAN H L, et al. Tailored reaction route by micropore confinement for Li-S batteries operating under lean electrolyte conditions[J]. Advanced Energy Materials, 2018, 8(21): doi: 10.1002/aenm.201800590. |
[1] | Zhen YAO, Qi ZHANG, Rui WANG, Qinghua LIU, Baoguo WANG, Ping MIAO. Application of biomass derived carbon materials in all vanadium flow battery electrodes [J]. Energy Storage Science and Technology, 2022, 11(7): 2083-2091. |
[2] | Guohui FENG, Tianyu WANG, Gang WANG. A simulation analysis on the effect of encapsulation mode on the heat storage and release performance of phase change water tank [J]. Energy Storage Science and Technology, 2022, 11(7): 2161-2176. |
[3] | Zhongbo LI, Jingxiao HAN, Chengcheng WANG, Hui YANG, Na YANG, Shaowu YIN, Li WANG, Lige TONG, Zhiwei TANG, Yulong DING. Simulation and the parameter influence relationship of the discharging process in a thermochemical reactor [J]. Energy Storage Science and Technology, 2022, 11(7): 2133-2140. |
[4] | Hongtao LI, Shuai ZHANG, Xudong LI, Yunguang JI, Mingxu SUN, Xin LI. Application of single tank energy storage and heat exchange system in hot air non-woven fabric process [J]. Energy Storage Science and Technology, 2022, 11(7): 2250-2257. |
[5] | Wenlan YE, Ming ZHAO, Mingyu HU, Yang TIAN. Analysis of heat storage and release performance of tube bundle phase change heat accumulator [J]. Energy Storage Science and Technology, 2022, 11(7): 2151-2160. |
[6] | Lijun Liu, Yaqian Ning, Xiaoqing Li, Xiaoyan Liu. Performance enhancement simulation of eccentric fractal-fin tube phase change heat storage unit [J]. Energy Storage Science and Technology, 2022, (): 1-9. |
[7] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
[8] | FENG Jinxin, LING Ziye, FANG Xiaoming, ZHANG Zhengguo. Research progress on phase-change emulsions [J]. Energy Storage Science and Technology, 2022, 11(6): 1968-1979. |
[9] | JIANG Chengyi, ZHONG Zunrui, WU Zide, PENG Hao. Thermodynamic properties of C8H18-C11H24 mixed alkane system phase change materials [J]. Energy Storage Science and Technology, 2022, 11(6): 1957-1967. |
[10] | WU Xiaoling, ZHOU Tao, LIU Yuzhao, DU Yanping, CHEN Huiping, LI Shun. Numerical study on cooling enhancement of micro devices by designing turbulence based hollow micro pin-fin arrays with lateral holes [J]. Energy Storage Science and Technology, 2022, 11(6): 1980-1987. |
[11] | WU Yuting, KOU Zhenfeng, ZHANG Cancan, WU Yiyang. Analysis of the dynamic distribution parameters of a solid sodium chloride column heat exchanger [J]. Energy Storage Science and Technology, 2022, 11(6): 1988-1995. |
[12] | WANG Can, MA Pan, ZHU Guoliang, WEI Shuimiao, YANG Zhilu, ZHANG Zhiyu. Effect of lithium acrylic-coated nature graphite on its electrochemical properties [J]. Energy Storage Science and Technology, 2022, 11(6): 1706-1714. |
[13] | HAO Jiahao, YUE Yunkai, ZHANG Jiajun, YANG Junling, LI Xiaoqiong, SONG Yanchang, ZHANG Zhentao. Research status and development prospect of carbon dioxide energy storage technology [J]. Energy Storage Science and Technology, 2022, (): 1-10. |
[14] | Na YANG, Chengcheng WANG, Hui YANG, Zhihao HU, Lige TONG, Zhongbo LI, Li WANG, Yulong DING, Na LI. Non-isothermal kinetics calculation and heat storage performance analysis of silica gel based on thermochemical reaction [J]. Energy Storage Science and Technology, 2022, 11(5): 1331-1338. |
[15] | Weishu WANG, Xiangxin ZHANG, Zikun YAO, Juan ZHEN. Study on reaction rate characteristics of hydrogen storage in MgH2 reactor [J]. Energy Storage Science and Technology, 2022, 11(5): 1543-1550. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||