Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (7): 2141-2150.doi: 10.19799/j.cnki.2095-4239.2021.0678
• Energy Storage Materials and Devices • Previous Articles Next Articles
Baocun DU(), Lijuan HUANG, Yonggang LEI, Chongfang SONG, Fei WANG
Received:
2021-12-17
Revised:
2022-01-27
Online:
2022-07-05
Published:
2022-06-29
Contact:
Baocun DU
E-mail:ntdbc0724@163.com
CLC Number:
Baocun DU, Lijuan HUANG, Yonggang LEI, Chongfang SONG, Fei WANG. Dynamic study on the thermal and stress performances of the molten salt packed-bed thermal storage tank[J]. Energy Storage Science and Technology, 2022, 11(7): 2141-2150.
1 | 何雅玲, 杜保存, 王坤, 等. 太阳能腔式熔盐吸热器随时空变化的光-热-力耦合一体化方法、机理分析及其失效准则研究[J]. 科学通报, 2017, 62(36): 4308-4321. |
HE Y L, DU B C, WANG K, et al. Study on the coupled photon-thermal-stress integration method, characteristics with time and failure criterion in the solar molten salt cavity receiver[J]. Chinese Science Bulletin, 2017, 62(36): 4308-4321. | |
2 | 汪翔, 陈海生, 徐玉杰, 等. 储热技术研究进展与趋势[J]. 科学通报, 2017, 62(15): 1602-1610. |
WANG X, CHEN H S, XU Y J, et al. Advances and prospects in thermal energy storage: A critical review[J]. Chinese Science Bulletin, 2017, 62(15): 1602-1610. | |
3 | GAUTAM A, SAINI R P. A review on sensible heat based packed bed solar thermal energy storage system for low temperature applications[J]. Solar Energy, 2020, 207: 937-956. |
4 | Libby C. Solar thermocline storage systems: Preliminary design study[R]. Palo Alto, CA: Electric Power Research Institute, 2010. |
5 | PACHECO J E, SHOWALTER S K, KOLB W J. Development of a molten-salt thermocline thermal storage system for parabolic trough plants[J]. Journal of Solar Energy Engineering, 2002, 124(2): 153-159. |
6 | 尹辉斌, 丁静, 杨晓西. 高温熔融盐斜温层单罐蓄热的热过程特性[J]. 中国电机工程学报, 2013, 33(26): 68-74, 1. |
YIN H B, DING J, YANG X X. Thermal characteristics of the high-temperature molten-salt heat storage process with a thermocline in single tank[J]. Proceedings of the CSEE, 2013, 33(26): 68-74, 1. | |
7 | XU C, WANG Z F, HE Y L, et al. Sensitivity analysis of the numerical study on the thermal performance of a packed-bed molten salt thermocline thermal storage system[J]. Applied Energy, 2012, 92: 65-75. |
8 | LI M J, QIU Y, LI M J. Cyclic thermal performance analysis of a traditional single-layered and of a novel multi-layered packed-bed molten salt thermocline tank[J]. Renewable Energy, 2018, 118: 565-578. |
9 | ZHAO B C, CHENG M S, LIU C, et al. Thermal performance and cost analysis of a multi-layered solid-PCM thermocline thermal energy storage for CSP tower plants[J]. Applied Energy, 2016, 178: 784-799. |
10 | FLUECKIGER S, YANG Z, GARIMELLA S V. An integrated thermal and mechanical investigation of molten-salt thermocline energy storage[J]. Applied Energy, 2011, 88(6): 2098-2105. |
11 | WANG G, YU S Y, NIU S Q, et al. A comprehensive parametric study on integrated thermal and mechanical performances of molten-salt-based thermocline tank[J]. Applied Thermal Engineering, 2020, 170: 115010. |
12 | 张晓明, 吴玉庭, 张灿灿. 大型熔盐罐结构设计、温度分布与强度分析[J]. 北京工业大学学报, 2021, 47(9): 1064-1073. |
ZHANG X M, WU Y T, ZHANG C C. Temperature distribution and strength analysis of large-scale molten salt thermal storage tank[J]. Journal of Beijing University of Technology, 2021, 47(9): 1064-1073. | |
13 | WAN Z J, WEI J J, QAISRANI M A, et al. Evaluation on thermal and mechanical performance of the hot tank in the two-tank molten salt heat storage system[J]. Applied Thermal Engineering, 2020, 167: 114775. |
14 | Petroleum Standardization Research Institute. Welded tanks for oil storage: API Std 650 [S]. Washington: American Petroleum Institute, 2013. |
15 | 国家市场监督管理总局, 国家标准化管理委员会. 压力管道规范 工业管道 第2部分:材料: GB/T 20801.2—2020[S]. 北京: 中国标准出版社, 2020. |
Standardization Administration of the People's Republic of China. Pressure piping code—Industrial piping—Part 2: Materials: GB/T 20801.2—2020[S]. Beijing: Standards Press of China, 2020. | |
16 | ASME Boiler and Pressure Vessel Committee on Nuclear Power. ASME Boiler and pressure vessel code Ⅱ. Materials Part D Properties (Metric)[S]. New York: The American Society of Mechanical Engineers, 2013. |
17 | 吴家龙. 弹性力学[M]. 北京: 高等教育出版社, 2001. |
WU J L. Elasticity[M]. Beijing: Higher Education Press, 2001. | |
18 | 姚仰平. 土力学[M]. 2版. 北京: 高等教育出版社, 2011. |
[1] | Hongtao LI, Shuai ZHANG, Xudong LI, Yunguang JI, Mingxu SUN, Xin LI. Application of single tank energy storage and heat exchange system in hot air non-woven fabric process [J]. Energy Storage Science and Technology, 2022, 11(7): 2250-2257. |
[2] | Ting WANG, Chao YANG, Honglei SU, Wei MA, Yuan JING, Hailong WANG. Analysis of the mechanical properties of polycrystalline and single crystal NMC811 materials [J]. Energy Storage Science and Technology, 2022, 11(11): 3478-3486. |
[3] | Cancan ZHANG, Songtao HAN, Yuting WU, Yuanwei LU, Junnan NIU. Nitrate molten salt-based nanofluid flow and heat transfer characteristics in twisted tube [J]. Energy Storage Science and Technology, 2022, 11(11): 3641-3648. |
[4] | Hui WANG, Jun LI, Peiwang ZHU, Jian WANG, Chunlin ZHANG. Hundred-megawatt molten salt heat storage system for deep peak shaving of thermal power plant [J]. Energy Storage Science and Technology, 2021, 10(5): 1760-1767. |
[5] | Cong HE, Yuanwei LU, Wenbing SONG, Xiaotong CHEN, Yuting WU, Zhansheng FAN. The phase diagram prediction and experimental study of ternary same cation systems [J]. Energy Storage Science and Technology, 2021, 10(5): 1729-1734. |
[6] | Xiaotong CHEN, Yuanwei LU, Cong HE, Wenbing SONG, Yuting WU, Guichun YANG. Heat-release stability of single tank molten salt heat storage system based on continuous regulation of heat exchange area [J]. Energy Storage Science and Technology, 2021, 10(5): 1753-1759. |
[7] | Yuting WU, Subudao MING, Cancan ZHANG, Yuanwei LU. Experimental research of the thermophysical properties of ternary mixed carbonate molten salts [J]. Energy Storage Science and Technology, 2021, 10(4): 1292-1296. |
[8] | Yaxuan XIONG, Hui ZHANG, Yuting WU, Yulong DING. Effect of nanoparticles on surface tension and density of binary nitrate [J]. Energy Storage Science and Technology, 2021, 10(4): 1297-1304. |
[9] | Chen LAN, Wenyan LI. Stress characteristics of two kinds of variable thickness hollow energy storage flywheels [J]. Energy Storage Science and Technology, 2021, 10(3): 1080-1087. |
[10] | Peng SHENG, LI XU, Guangyao ZHAO, Yan HAN, Yuting WU. Preparation and thermophysical properties of novel mixed nitrate molten salts [J]. Energy Storage Science and Technology, 2021, 10(1): 170-176. |
[11] | Haihua LUO, Qiang SHEN, Junguang LIN, Yanmei ZHANG, Yunke XU. Development of new low melting point mixed molten salt heat storage material [J]. Energy Storage Science and Technology, 2020, 9(6): 1755-1759. |
[12] | Zhao LI, Baorang LI, Liu CUI, Xiaoze DU. Stability of the thermal performances of molten salt-based nanofluid [J]. Energy Storage Science and Technology, 2020, 9(6): 1775-1783. |
[13] | ZHANG Chunyu, GUO Hang, WU Yuting, ZHANG Cancan, YE Fang, MA Chongfang. Forced convection heat transfer characteristics in a circular tube with low-melting-point quaternary nitrate [J]. Energy Storage Science and Technology, 2020, 9(4): 1091-1097. |
[14] | ZHANG Cancan, WU Yuting, LU Yuanwei. Preparation and comparative analysis of thermophysical properties on low melting point mixed nitrate molten salts [J]. Energy Storage Science and Technology, 2020, 9(2): 435-439. |
[15] | ZHANG Baoge, ZHANG Zhen, WANG Donghao, LI Ping, RONG Yao. A bidirectional DC/DC converter for hybrid energy storage system [J]. Energy Storage Science and Technology, 2020, 9(1): 178-185. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||