Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (7): 2213-2221.doi: 10.19799/j.cnki.2095-4239.2022.0140
• Energy Storage System and Engineering • Previous Articles Next Articles
Tian WU1,2(), Mincheng LIN3, Hao HAI3, Haiyu SUN3, Zhaoyin WEN4, Fuyuan MA1,2()
Received:
2022-03-16
Revised:
2022-03-19
Online:
2022-07-05
Published:
2022-06-29
Contact:
Fuyuan MA
E-mail:wutian@zjenergy.com.cn;mafuyuan@zjenergy.com.cn
CLC Number:
Tian WU, Mincheng LIN, Hao HAI, Haiyu SUN, Zhaoyin WEN, Fuyuan MA. Development of high-power Ni-MH battery system for primary frequency modulation[J]. Energy Storage Science and Technology, 2022, 11(7): 2213-2221.
Table 1
Performance comparisons of Ni-MH batteries with Li-ion batteries, supercapacitors and flywheel energy storage"
功率型储能 技术类型 | 功率密度 /(W/kg) | 功率密度 /(W/L) | 功率成本 /(元/kW) | 能量密度 /(Wh/kg) | 能量密度 /(Wh/L) | 能量成本 /(元/kWh) | 能量效率 /% | 循环寿命 /次 |
---|---|---|---|---|---|---|---|---|
锂离子电池(LFP) | 150~300 | 400~800 | 1000~2000 | 120~180 | 200~400 | 700~2000 | 约95% | 约5000 |
超级电容器 | 1000~10000 | 400~1000 | 100~400 | 0.5~7 | 4~10 | 9500~13500 | 约95% | 约1000000 |
飞轮储能 | 500~4000 | 100~250 | 1700~2000 | 20~50 | 20~100 | 44000~45000 | 约90% | 20000以上 |
镍氢电池 | 500~1200 | 500~1500 | 600~1000 | 50~100 | 100~150 | 4000~6000 | 约90% | 3000以上 |
Table 2
Comparison of cost parameters between Ni-MH battery energy storage system and lithium ion battery energy storage system"
参数名称 | 镍氢电池 | 锂离子电池(LFP) |
---|---|---|
功率/容量配置 | 5 MW/0.5 MWh (10 C方案) | 5 MW/2.5 MWh (2 C方案) |
直流侧设备(电池+BMS+成组)单位容量费用/(万元/MWh) | 600~700 | 约150 |
交流侧设备单位功率费用/(万元/MW) | 40 | 40 |
系统集成单位容量费用/(万元/MWh) | 50 | 50 |
总的功率成本/(万元/MW) | 105~115 | 约130 |
1 | AKRAM U, NADARAJAH M, SHAH R, et al. A review on rapid responsive energy storage technologies for frequency regulation in modern power systems[J]. Renewable and Sustainable Energy Reviews, 2020, 120: 109626. |
2 | 程明. 新能源与分布式电源系统(下)[J]. 电力需求侧管理, 2003, 5(4): 43-46. |
CHENG M. New energy and distributed power-supply system[J]. Power Demand Side Management, 2003, 5(4): 43-46. | |
3 | 贾天下, 陈磊, 闵勇, 等. 快速响应储能参与一次调频的控制策略[J]. 清华大学学报(自然科学版), 2021, 61(5): 429-436. |
JIA T X, CHEN L, MIN Y, et al. Control strategy for primary frequency regulation with the participation of a quick response energy storage[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(5): 429-436. | |
4 | 王华卫, 张平. 350 MW级火电机组与电储能联合调频系统设计研究[J]. 电工技术, 2019(6): 61-63, 117. |
WANG H W, ZHANG P. Design and research on joint frequency modulation system for 350 MW grade thermal power unit and energy storage[J]. Electric Engineering, 2019(6): 61-63, 117. | |
5 | 陈大宇, 张粒子, 王澍, 等. 储能在美国调频市场中的发展及启示[J]. 电力系统自动化, 2013, 37(1): 9-13. |
CHEN D Y, ZHANG L Z, WANG S, et al. Development of energy storage in frequency regulation market of United States and its enlightenment[J]. Automation of Electric Power Systems, 2013, 37(1): 9-13. | |
6 | 杨水丽, 李建林, 李蓓, 等. 电池储能系统参与电网调频的优势分析[J]. 电网与清洁能源, 2013, 29(2): 43-47. |
YANG S L, LI J L, LI B, et al. Advantages of battery energy storage system for frequency regulation[J]. Power System and Clean Energy, 2013, 29(2): 43-47. | |
7 | 李建林, 杨水丽, 高凯. 大规模储能系统辅助常规机组调频技术分析[J]. 电力建设, 2015, 36(5): 105-110. |
LI J L, YANG S L, GAO K. Frequency modulation technology for conventional units assisted by large scale energy storage system[J]. Electric Power Construction, 2015, 36(5): 105-110. | |
8 | ŚWIERCZYŃSKI M, STROE D I, STAN A I, et al. Primary frequency regulation with Li-ion battery energy storage system: A case study for Denmark[C]// 2013 IEEE ECCE Asia Downunder. June 3-6, 2013, Melbourne, VIC, Australia. IEEE, 2013: 487-492. |
9 | THORBERGSSON E, KNAP V, ŚWIERCZYNSKI M, et al. Primary frequency regulation with Li-ion battery based energy storage system-evaluation and comparison of different control strategies[C]// Intelec 2013; 35th International Telecommunications Energy Conference, Smart Power and Efficiency. October 13-17, 2013, Hamburg, Germany. VDE, 2013: 1-6. |
10 | DÍAZ-GONZÁLEZ F, HAU M, SUMPER A, et al. Coordinated operation of wind turbines and flywheel storage for primary frequency control support[J]. International Journal of Electrical Power & Energy Systems, 2015, 68: 313-326. |
11 | 何林轩, 李文艳. 飞轮储能辅助火电机组一次调频过程仿真分析[J]. 储能科学与技术, 2021, 10(5): 1679-1686. |
HE L X, LI W Y. Simulation of the primary frequency modulation process of thermal power units with the auxiliary of flywheel energy storage[J]. Energy Storage Science and Technology, 2021, 10(5): 1679-1686. | |
12 | HUANG J Y, LI X R, ZHOU T T, et al. Optimal capacity allocation for supercapacitor energy storage system in power grid primary frequency regulation[J]. Advanced Materials Research, 2014, 1070/1071/1072: 407-417. |
13 | 张建, 郭慰问, 邹海曙, 等. 100 kW/200 kWh氢镍电池储能系统[J]. 储能科学与技术, 2016, 5(4): 596-601. |
ZHANG J, GUO W W, ZOU H S, et al. 100 kW/200 kWh energy storage system of MH-Ni batteries[J]. Energy Storage Science and Technology, 2016, 5(4): 596-601. | |
14 | SILVESTRI L, FORCINA A, ARCESE G, et al. Recycling technologies of nickel-metal hydride batteries: An LCA based analysis[J]. Journal of Cleaner Production, 2020, 273: 123083. |
15 | LI M M, WANG C C, YANG C C. Development of high-performance hydrogen storage alloys for applications in nickel-metal hydride batteries at ultra-low temperature[J]. Journal of Power Sources, 2021, 491: 229585. |
16 | 王雨潇, 任慧平, 皇甫益. 镍氢电池在电动汽车上的发展[J]. 包钢科技, 2019, 45(1): 95-98. |
WANG Y X, REN H P, HUANGPU Y. Development of nickel-metal hydride batteries in electric vehicles[J]. Science & Technology of Baotou Steel, 2019, 45(1): 95-98. | |
17 | 孟高军, 张峰, 赵宇, 等. 电池储能参与电网一次调频的优化综合控制策略[J]. 电工电能新技术, 2021, 40(6): 43-49. |
MENG G J, ZHANG F, ZHAO Y, et al. Optimized integrated control strategy of battery energy storage participating in primary frequency regulation of power grid[J]. Advanced Technology of Electrical Engineering and Energy, 2021, 40(6): 43-49. | |
18 | 何颖源, 陈永翀, 刘勇, 等. 储能的度电成本和里程成本分析[J]. 电工电能新技术, 2019, 38(9): 1-10. |
HE Y Y, CHEN Y C, LIU Y, et al. Analysis of cost per kilowatt-hour and cost per mileage for energy storage technologies[J]. Advanced Technology of Electrical Engineering and Energy, 2019, 38(9): 1-10. |
[1] | Xin WU, Wenju SHANG, Zhiyong MA, Wei TENG, Shuang ZHANG, Hairong LUO. Coordinated control method for pumped and flywheel hybrid energy storage system [J]. Energy Storage Science and Technology, 2023, 12(2): 468-476. |
[2] | Haidong CHEN, Fei MENG, Qing WANG, Feng HOU, Yi WANG, Zhihua ZHANG. Influence of installed capacity of energy storage system and renewable energy power generation on power system performance [J]. Energy Storage Science and Technology, 2023, 12(2): 477-485. |
[3] | Wenkai ZHU, Xing ZHOU, Yajie LIU, Tao ZHANG, Yuanming SONG. Real time state of charge estimation method of lithium-ion battery based on recursive gated recurrent unit neural network [J]. Energy Storage Science and Technology, 2023, 12(2): 570-578. |
[4] | Meiqian HOU, Qifan NIU, Jie XING, Yinghao SHAN. Optimal configuration of energy storage system in active distribution network with the consideration of reliability [J]. Energy Storage Science and Technology, 2023, 12(2): 504-514. |
[5] | Lulu LI, Zhengshun TAO, Tinglong PAN, Weilin YANG, Guanyang HU. Research on fractional modeling and SOC estimation strategy for lithium batteries [J]. Energy Storage Science and Technology, 2023, 12(2): 544-551. |
[6] | Juntao CHEN, Yajun WANG, Shunyi SONG, Wenhao QU, Yibing LIU. Simulation of the primary frequency modulation process of wind power with an auxiliary flywheel energy storage [J]. Energy Storage Science and Technology, 2023, 12(1): 172-179. |
[7] | Qingyang CHEN, Yinghui HE, Guanding YU, Mingyang LIU, Chong XU, Zhenming LI. Integrating model- and data-driven methods for accurate state estimation of lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(1): 209-217. |
[8] | Huamin ZHANG. Development, cost analysis considering various durations, and advancement of vanadium flow batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2772-2780. |
[9] | Congjia ZHANG, Minda SHI, Chen XU, Zhenyu HUANG, Song CI. Intrinsic safety mechanism and case analysis of energy storage systems based on dynamically reconfigurable battery network [J]. Energy Storage Science and Technology, 2022, 11(8): 2442-2451. |
[10] | Qingsong ZHANG, Yang ZHAO, Tiantian LIU. Effects of state of charge and battery layout on thermal runaway propagation in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(8): 2519-2525. |
[11] | Jianmin HAN, Feiyu XUE, Shuangyin LIANG, Tianshu QIAO. Hybrid energy storage system assisted frequency modulation simulation of the coal-fired unit under fuzzy control optimization [J]. Energy Storage Science and Technology, 2022, 11(7): 2188-2196. |
[12] | Yuhan GUO, Dan YU, Peng YANG, Ziji WANG, Jintao WANG. Optimal capacity allocation method of a distributed energy storage system based on greedy algorithm [J]. Energy Storage Science and Technology, 2022, 11(7): 2295-2304. |
[13] | Jianlin LI, Zedong ZHANG, Yaxin LI, Yi ZHOU, Yunli YUE. Research on key technologies of mobile energy storage system under the target of carbon neutrality [J]. Energy Storage Science and Technology, 2022, 11(5): 1523-1536. |
[14] | Feng TIAN, Zhijiang CHENG, Handi YANG, Tianxiang YANG. Fault-tolerant control strategy for modular multi-level hybrid converter battery energy storage system [J]. Energy Storage Science and Technology, 2022, 11(5): 1583-1591. |
[15] | Hao LI, Chang LIU, Bo MIAO, Jing ZHANG. Coordinative optimal dispatch of multi-park integrated energy system considering complementary cooling, heating and power and energy storage systems [J]. Energy Storage Science and Technology, 2022, 11(5): 1482-1491. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||