Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (1): 236-246.doi: 10.19799/j.cnki.2095-4239.2022.0491
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Received:
2022-08-30
Revised:
2022-09-05
Online:
2023-01-05
Published:
2023-02-08
Contact:
Yuanxiu XING
E-mail:yuanxiu@126.com
CLC Number:
Qiantong LIU, Yuanxiu XING. Remaining life prediction of lithium-ion battery based on VMD-PSO-GRU model[J]. Energy Storage Science and Technology, 2023, 12(1): 236-246.
Table 4
Prediction results of different models on four batteries"
电池型号 | 模型 | MAE | RMSE | MAPE/% | RA | RULe |
---|---|---|---|---|---|---|
B0005 | GRU | 0.0670 | 0.0707 | 4.76 | 0.9512 | 7 |
EMD-GRU | 0.0281 | 0.0346 | 1.96 | 0.9792 | 4 | |
VMD-GRU | 0.0143 | 0.0189 | 0.99 | 0.9893 | 3 | |
VMD-PSO-GRU | 0.0118 | 0.0148 | 0.83 | 0.9914 | 2 | |
B0006 | GRU | 0.0555 | 0.0620 | 4.11 | 0.9574 | 6 |
EMD-GRU | 0.0353 | 0.0433 | 2.61 | 0.9728 | 4 | |
VMD-GRU | 0.0199 | 0.0215 | 1.55 | 0.9854 | 3 | |
VMD-PSO-GRU | 0.0091 | 0.0121 | 0.71 | 0.9934 | 1 | |
B0007 | GRU | 0.0470 | 0.0539 | 3.09 | 0.9680 | 5 |
EMD-GRU | 0.0302 | 0.0356 | 1.99 | 0.9794 | 4 | |
VMD-GRU | 0.0211 | 0.0189 | 2.58 | 0.9891 | 3 | |
VMD-PSO-GRU | 0.0130 | 0.0137 | 0.88 | 0.9914 | 2 | |
B0018 | GRU | 0.0706 | 0.0805 | 4.96 | 0.9494 | 7 |
EMD-GRU | 0.0327 | 0.0381 | 2.30 | 0.9766 | 4 | |
VMD-GRU | 0.0232 | 0.0242 | 1.65 | 0.9836 | 3 | |
VMD-PSO-GRU | 0.0082 | 0.0098 | 0.58 | 0.9942 | 1 |
1 | WANG S L, JIN S Y, BAI D K, et al. A critical review of improved deep learning methods for the remaining useful life prediction of lithium-ion batteries[J]. Energy Reports, 2021, 7: 5562-5574. |
2 | 李练兵, 季亮, 祝亚尊, 等. 等效循环电池组剩余使用寿命预测[J]. 工程科学学报, 2020, 42(6): 796-802. |
LI L B, JI L, ZHU Y Z, et al. Investigation of RUL prediction of lithium-ion battery equivalent cycle battery pack[J]. Chinese Journal of Engineering, 2020, 42(6): 796-802. | |
3 | LIU C, WANG Y J, CHEN Z H. Degradation model and cycle life prediction for lithium-ion battery used in hybrid energy storage system[J]. Energy, 2019, 166: 796-806. |
4 | KHODADADI SADABADI K, JIN X, RIZZONI G. Prediction of remaining useful life for a composite electrode lithium ion battery cell using an electrochemical model to estimate the state of health[J]. Journal of Power Sources, 2021, 481: doi: 10.1016/j.jpowsour.2020.228861. |
5 | 宋胜, 李云伍, 赵颖, 等. 锂离子电池片段数据的荷电状态估计研究[J]. 电源技术, 2022, 46(7): 734-738. |
SONG S, LI Y W, ZHAO Y, et al. Research on SOC estimation based on fragment data of lithium-ion battery[J]. Chinese Journal of Power Sources, 2022, 46(7): 734-738. | |
6 | 谢滟馨, 王顺利, 史卫豪, 等. 一种用于高保真锂电池SOC估计的无迹粒子滤波新方法[J]. 储能科学与技术, 2021, 10(2): 722-731. |
XIE Y X, WANG S L, SHI W H, et al. A new method of unscented particle filter for high-fidelity lithium-ion battery SOC estimation[J]. Energy Storage Science and Technology, 2021, 10(2): 722-731. | |
7 | 焦自权, 范兴明, 张鑫, 等. 基于改进粒子滤波算法的锂离子电池状态跟踪与剩余使用寿命预测方法[J]. 电工技术学报, 2020, 35(18): 3979-3993. |
JIAO Z Q, FAN X M, ZHANG X, et al. State tracking and remaining useful life predictive method of Li-ion battery based on improved particle filter algorithm[J]. Transactions of China Electrotechnical Society, 2020, 35(18): 3979-3993. | |
8 | LIU Z Y, HE H J, XIE J, et al. Self-discharge prediction method for lithium-ion batteries based on improved support vector machine[J]. Journal of Energy Storage, 2022, 55: doi:10.1016/j.est.2022.105571. |
9 | DENG Z W, HU X S, LIN X K, et al. Data-driven state of charge estimation for lithium-ion battery packs based on Gaussian process regression[J]. Energy, 2020, 205: doi:10.1016/j.energy. 2020.118000. |
10 | 何星, 丁有军, 宋丽君, 等. 基于加速鱼群算法的锂离子电池剩余寿命预测[J]. 兵器装备工程学报, 2022, 43(2): 163-169. |
HE X, DING Y J, SONG L J, et al. Residual life prediction for lithium-ion battery based on accelerating AFSA[J]. Journal of Ordnance Equipment Engineering, 2022, 43(2): 163-169. | |
11 | 徐帅, 刘雨辰, 周飞. 基于RNN的锂离子电池SOC估算研究进展[J]. 电源技术, 2021, 45(2): 263-269. |
XU S, LIU Y C, ZHOU F. Research progress of SOC estimation of lithium ion batteries based on RNN[J]. Chinese Journal of Power Sources, 2021, 45(2): 263-269. | |
12 | 陈诚, 皮志勇, 赵英龙, 等. 基于自适应灾变遗传-循环神经网络的锂离子电池SOC估计[J]. 电气工程学报, 2022, 17(1): 86-94. |
CHEN C, PI Z Y, ZHAO Y L, et al. State of charge estimation with adaptive cataclysm genetic algorithm-recurrent neural network for Li-ion batteries[J]. Journal of Electrical Engineering, 2022, 17(1): 86-94. | |
13 | 刘伟霞, 田勋, 肖家勇, 等. 基于混合模型及LSTM的锂电池SOH与剩余寿命预测[J]. 储能科学与技术, 2021, 10(2): 689-694. |
LIU W X, TIAN X, XIAO J Y, et al. Estimation of SOH and remaining life of lithium batteries based on a combination model and long short-term memory[J]. Energy Storage Science and Technology, 2021, 10(2): 689-694. | |
14 | 毕贵红, 谢旭, 蔡子龙, 等. 动态条件下基于深度学习的锂电池容量估计[J]. 汽车工程, 2022, 44(6): 868-877, 885. |
BI G H, XIE X, CAI Z L, et al. Capacity estimation of lithium-ion battery based on deep learning under dynamic conditions[J]. Automotive Engineering, 2022, 44(6): 868-877, 885. | |
15 | 范元亮, 方略斌, 吴涵, 等. 基于片段充电时间和GRU的锂离子电池健康状态预测方法: CN113917336A[P]. 2022-01-11. |
FAN Y L, FANG L B, WU H, et al. Lithium ion battery health state prediction method based on fragment charging time and GRU: CN113917336A[P]. 2022-01-11. | |
16 | 胡天中, 余建波. 基于多尺度分解和深度学习的锂电池寿命预测[J]. 浙江大学学报(工学版), 2019, 53(10): 1852-1864. |
HU T Z, YU J B. Life prediction of lithium-ion batteries based on multiscale decomposition and deep learning[J]. Journal of Zhejiang University (Engineering Science), 2019, 53(10): 1852-1864. | |
17 | CHEN D Q, HONG W C, ZHOU X Z. Transformer network for remaining useful life prediction of lithium-ion batteries[J]. IEEE Access, 10: 19621-19628. |
18 | 魏孟, 王桥, 叶敏, 等. 基于NARX动态神经网络的锂离子电池剩余寿命间接预测[J]. 工程科学学报, 2022, 44(3): 380-388. |
WEI M, WANG Q, YE M, et al. An indirect remaining useful life prediction of lithium-ion batteries based on a NARX dynamic neural network[J]. Chinese Journal of Engineering, 2022, 44(3): 380-388. | |
19 | DING P, LIU X J, LI H Q, et al. Useful life prediction based on wavelet packet decomposition and two-dimensional convolutional neural network for lithium-ion batteries[J]. Renewable and Sustainable Energy Reviews, 2021, 148: doi: 10.1016/j.rser.2021.111287. |
20 | 郑雪莹, 邓晓刚, 曹玉苹. 基于能量加权高斯过程回归的锂离子电池健康状态预测[J]. 电子测量与仪器学报, 2020, 34(6): 63-69. |
ZHENG X Y, DENG X G, CAO Y P. State of health prediction of lithium-ion batteries based on energy-weighted Gaussian process regression[J]. Journal of Electronic Measurement and Instrumentation, 2020, 34(6): 63-69. | |
21 | 黄凯, 丁恒, 郭永芳, 等. 基于数据预处理和长短期记忆神经网络的锂离子电池寿命预测[J]. 电工技术学报, 2022, 37(15): 3753-3766. |
HUANG K, DING H, GUO Y F, et al. Prediction of remaining useful life of lithium-ion battery based on adaptive data preprocessing and long short-term memory network[J]. Transactions of China Electrotechnical Society, 2022, 37(15): 3753-3766. | |
22 | 陈红霞, 丁国荣, 陈贵词, 等. 联合变分模态分解和长短时记忆网络的锂离子电池健康状态估计[J/OL]. 电源学报:1-13[2022-11-08].http://kns.cnki.net/kcms/detail/12.1420.TM.20220524.1841.008.html. |
CHEN H X, DING G R, CHEN G C, et al. Health state estimation of lithium-ion batteries based on joint variational modal decomposition and long-term and short-term memory networks[J/OL]. Journal of Power Supply: 1-13 [2022-11-08].http://kns.cnki.net/kcms/detail/12.1420.TM.20220524.1841.008.html. | |
23 | 王冉, 后麒麟, 石如玉, 等. 基于变分模态分解与集成深度模型的锂电池剩余寿命预测方法[J]. 仪器仪表学报, 2021, 42(4): 111-120. |
WANG R, HOU Q L, SHI R Y, et al. Remaining useful life prediction method of lithium battery based on variational mode decomposition and integrated deep model[J]. Chinese Journal of Scientific Instrument, 2021, 42(4): 111-120. | |
24 | 卢熠婷, 黄云飞, 陈刚. 一种蓄电池健康状态评估方法及装置: CN111142038A[P]. 2020-05-12. |
LU Y T, HUANG Y F, CHEN G. Storage battery health state evaluation method and device: CN111142038A[P]. 2020-05-12. | |
25 | 赵光财, 林名强, 戴厚德, 等. 一种锂电池SOH估计的KNN-马尔科夫修正策略[J]. 自动化学报, 2021, 47(2): 453-463. |
ZHAO G C, LIN M Q, DAI H D, et al. A modified strategy using the KNN-Markov chain for SOH estimation of lithium batteries[J]. Acta Automatica Sinica, 2021, 47(2): 453-463. | |
26 | DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544. |
27 | 李晓利, 高金峰. 用于配电网多目标无功优化的改进粒子群优化算法[J]. 电力自动化设备, 2019, 39(1): 106-111. |
LI X L, GAO J F. Improved particle swarm optimization algorithm for multi-objective reactive power optimization of distribution network[J]. Electric Power Automation Equipment, 2019, 39(1): 106-111. |
[1] | Qingyang CHEN, Yinghui HE, Guanding YU, Mingyang LIU, Chong XU, Zhenming LI. Integrating model- and data-driven methods for accurate state estimation of lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(1): 209-217. |
[2] | Miaomiao CHEN, Qinjun SHAO, Jian CHEN. Preparation and application of Cr8O21 as cathode material for high specific energy lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 3011-3020. |
[3] | Jianping ZHONG, Tao FEI. Defects detection and recognition of lithium battery electrode plate coating based on WOA-BPNN [J]. Energy Storage Science and Technology, 2022, 11(8): 2537-2545. |
[4] | Peng HUANG, Zhigen NIE, Zheng CHEN, Xing SHU, Shiquan SHEN, Jipeng YANG, Jiangwei SHEN. Capacity prediction of lithium battery based on optimized Elman neural network [J]. Energy Storage Science and Technology, 2022, 11(7): 2282-2294. |
[5] | Yu SHI, Zhong ZHANG, Jingying YANG, Wei QIAN, Hao LI, Xiang ZHAO, Xintong YANG. Opportunity cost modelling and market strategy of energy storage participating in the AGC market [J]. Energy Storage Science and Technology, 2022, 11(7): 2366-2373. |
[6] | Jiayu YUAN, Xinguang LI, Wenchao WANG, Chengkuo FU. Simulation of serpentine cooling structure of battery pack considering mass flow [J]. Energy Storage Science and Technology, 2022, 11(7): 2274-2281. |
[7] | WU Yida, ZHANG Yi, ZHAN Yuanjie, GUO Yaqi, ZHANG liao, LIU Xingjiang, YU Hailong, ZHAO Wenwu, HUANG Xuejie. The effect of B2O3 modification on the electrochemical properties of LiCoO2 cathode [J]. Energy Storage Science and Technology, 2022, 11(6): 1687-1692. |
[8] | Suhang WANG, Jianlin LI, Yaxin LI, Junjie XIONG, Wei ZENG. Research on charging strategy of lithium-ion battery system at low temperature [J]. Energy Storage Science and Technology, 2022, 11(5): 1537-1542. |
[9] | Bowen CHEN, Ruiguang CUI, Yanbin SHEN, Liwei CHEN. Application of a novel method for characterization of local Young’s modulus in lithium (ion) batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 991-999. |
[10] | Xiang WANG, Jing XU, Yajun DING, Fan DING, Xin XU. Optimal design of liquid cooling pipeline for battery module based on VCALB [J]. Energy Storage Science and Technology, 2022, 11(2): 547-552. |
[11] | Yujie ZHANG, Xingxing WANG, Yu ZHU, Hongjun NI, Yelin DENG. Investigating the rate discharge performance of square ternary lithium batteries at a wide temperature range [J]. Energy Storage Science and Technology, 2022, 11(12): 3950-3956. |
[12] | Sifei ZHOU, Jun LI, Xiaofei WANG, Daoming ZHANG, Haoliang XUE. Research progress in the conductivity model of lithium battery electrolytes [J]. Energy Storage Science and Technology, 2022, 11(11): 3688-3698. |
[13] | Zhou LYU, Bo HE, Zhenze HUANG, Zhiyong LIANG. LE-ELM-based spatiotemporal modeling method of lithium battery thermal process [J]. Energy Storage Science and Technology, 2022, 11(10): 3200-3208. |
[14] | Chong LI, Chenhui WANG, Gao WANG, Zonghu LU, Chengzhi MA. Review on implementation method analysis and performance comparison of lithium battery state of charge estimation [J]. Energy Storage Science and Technology, 2022, 11(10): 3328-3344. |
[15] | Wei ZENG, Junjie XIONG, Suliang MA, Yuliang TAN, Jianlin LI. Research on control method of distributed energy storage system to improve photovoltaic consumption [J]. Energy Storage Science and Technology, 2022, 11(10): 3268-3274. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||