Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (11): 3528-3537.doi: 10.19799/j.cnki.2095-4239.2023.0447
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Yunteng DAI1(), Qiao PENG1(), Tianqi LIU1, Xueyang ZENG2, Gang CHEN2, Yan LI2, Jinhao MENG1
Received:
2023-06-27
Revised:
2023-07-03
Online:
2023-11-05
Published:
2023-11-16
Contact:
Qiao PENG
E-mail:daiyunteng@stu.scu.edu.cn;qpeng@scu.edu.cn
CLC Number:
Yunteng DAI, Qiao PENG, Tianqi LIU, Xueyang ZENG, Gang CHEN, Yan LI, Jinhao MENG. Application of equivalent circuit model of lithium-ion batteries to high current rate condition[J]. Energy Storage Science and Technology, 2023, 12(11): 3528-3537.
1 | 李建林, 肖珩. 锂离子电池建模现状综述[J]. 储能科学与技术, 2022, 11(2): 697-703. |
LI J L, XIAO H. Review on modeling of lithium-ion battery[J]. Energy Storage Science and Technology, 2022, 11(2): 697-703. | |
2 | LU L G, HAN X B, LI J Q, et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources, 2013, 226: 272-288. |
3 | 梁新成, 张勉, 黄国钧. 基于BMS的锂离子电池建模方法综述[J]. 储能科学与技术, 2020, 9(6): 1933-1939. |
LIANG X C, ZHANG M, HUANG G J. Review on lithium-ion battery modeling methods based on BMS[J]. Energy Storage Science and Technology, 2020, 9(6): 1933-1939. | |
4 | 唐传雨, 韩华春, 史明明, 等. 基于DEKF的储能电池系统SOC估计方法研究[J]. 电力工程技术, 2021, 40(3): 7-14. |
TANG C Y, HAN H C, SHI M M, et al. SOC estimation method of battery energy storage system for BMS test platform[J]. Electric Power Engineering Technology, 2021, 40(3): 7-14. | |
5 | 徐超, 李立伟, 杨玉新, 等. 基于改进粒子滤波的锂电池SOH预测[J]. 储能科学与技术, 2020, 9(6): 1954-1960. |
XU C, LI L W, YANG Y X, et al. Lithium-ion battery SOH estimation based on improved particle filter[J]. Energy Storage Science and Technology, 2020, 9(6): 1954-1960. | |
6 | TANG X P, LIU K L, LIU Q, et al. Comprehensive study and improvement of experimental methods for obtaining referenced battery state-of-power[J]. Journal of Power Sources, 2021, 512: 230462. |
7 | MENG J H, LUO G Z, RICCO M, et al. Overview of lithium-ion battery modeling methods for state-of-charge estimation in electrical vehicles[J]. Applied Sciences, 2018, 8(5): 659. |
8 | YANG J F, CAI Y F, PAN C F, et al. A novel resistor-inductor network-based equivalent circuit model of lithium-ion batteries under constant-voltage charging condition[J]. Applied Energy, 2019, 254: 113726. |
9 | Lockheed Idaho Technologies Co. PNGV battery test manual rev.0[R/OL]. 1997[2023-05-01]. https://www.osti.gov/servlets/purl/578702. |
10 | PLETT G L. High-performance battery-pack power estimation using a dynamic cell model[J]. IEEE Transactions on Vehicular Technology, 2004, 53(5): 1586-1593. |
11 | 尹乐乐, 靳成杰, 康健强, 等. 基于DP模型的锂离子电池能量状态估算[J]. 电源技术, 2019, 43(10): 1619-1622. |
YIN L L, JIN C J, KANG J Q, et al. Estimation of state of energy of lithium-ion batteries based on DP model[J]. Chinese Journal of Power Sources, 2019, 43(10): 1619-1622. | |
12 | ANDRE D, MEILER M, STEINER K, et al. Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. Ⅱ: Modelling[J]. Journal of Power Sources, 2011, 196(12): 5349-5356. |
13 | 朱卫平, 陈国旺, 卫志农, 等. 基于VFFRLS算法的锂电池参数辨识[J]. 电力工程技术, 2023, 42(1): 226-233. |
ZHU W P, CHEN G W, WEI Z N, et al. Parameter identification of lithium-ion battery based on least squares algorithm with variable forgetting factor[J]. Electric Power Engineering Technology, 2023, 42(1): 226-233. | |
14 | WEI Z B, TSENG K J, WAI N, et al. Adaptive estimation of state of charge and capacity with online identified battery model for vanadium redox flow battery[J]. Journal of Power Sources, 2016, 332: 389-398. |
15 | XIONG R, HE H W, SUN F C, et al. Model-based state of charge and peak power capability joint estimation of lithium-ion battery in plug-in hybrid electric vehicles[J]. Journal of Power Sources, 2013, 229: 159-169. |
16 | NEJAD S, GLADWIN D T. Online battery state of power prediction using PRBS and extended Kalman filter[J]. IEEE Transactions on Industrial Electronics, 2020, 67(5): 3747-3755. |
17 | 李欣雨, 韩雪冰, 卢兰光, 等. 基于大倍率电流脉冲的动力锂离子电池阻抗模型优化[J]. 储能科学与技术, 2023, 12(5): 1686-1694. |
LI X Y, HAN X B, LU L G, et al. Optimization of an impedance model for power Li-ion batteries based on a large multiplier current pulse[J]. Energy Storage Science and Technology, 2023, 12(5): 1686-1694. | |
18 | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 电动汽车用锂离子动力蓄电池包和系统 第2部分:高能量应用测试规程: GB/T 31467.2—2015[S]. 北京: 中国标准出版社, 2015. |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Lithium-ion traction battery pack and system for electric vehicles-Part 2: Test specification for high energy applications: GB/T 31467.2—2015[S]. Beijing: Standards Press of China, 2015. | |
19 | 杨新波, 郑岳久, 高文凯, 等. 基于改进等效电路模型的高比能量储能锂电池系统功率状态估计[J]. 电网技术, 2021, 45(1): 57-66. |
YANG X B, ZHENG Y J, GAO W K, et al. Power state estimation of high specific energy storage lithium battery system based on extended equivalent circuit model[J]. Power System Technology, 2021, 45(1): 57-66. | |
20 | HENTUNEN A, LEHMUSPELTO T, SUOMELA J. Time-domain parameter extraction method for Thévenin-equivalent circuit battery models[J]. IEEE Transactions on Energy Conversion, 2014, 29(3): 558-566. |
21 | 熊瑞. 动力电池管理系统核心算法[M]. 北京: 机械工业出版社, 2018. |
XIONG R. Core algorithm of battery management system for EVs[M]. Beijing: China Machine Press, 2018. |
[1] | Xiaowei HUANG, Shaopeng LI, Xiaogang ZHANG. Research on the impact and mechanism of the lithium replenishment degree of anode prelithiation on the performance of lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(9): 2727-2734. |
[2] | Xin GAO, Ruogu WANG, Wenjing GAO, Zejun DENG, Ruiqi LIANG, Kun YANG. Consistency evaluation method of battery pack in energy storage power station based on running data [J]. Energy Storage Science and Technology, 2023, 12(9): 2937-2945. |
[3] | Yonghao HUANG, Guojing ZANG, Weiya ZHU, Youhao LIAO, Weishan LI. Enhancing interfacial stability between lithium-containing ceramic separator and 4.35 V LiNi0.8Co0.1Mn0.1O2 cathode through LiF additives [J]. Energy Storage Science and Technology, 2023, 12(8): 2361-2369. |
[4] | Qixin GAO, Jingteng ZHAO, Guoxing LI. Research progress on fast-charging lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2166-2184. |
[5] | Jin LI, Qingsong WANG, Depeng KONG, Xiaodong WANG, Zhenhua YU, Yanfei LE, Xinyan HUANG, Zhenkai HU, Houfu WU, Huabin FANG, Caowei, Shaoyu ZHANG, Ping ZHUO, Ye CHEN, Ziting LI, Wenxin MEI, Yue ZHANG, Lixiang ZHAO, Liang TANG, Zonghou HUANG, Chi CHEN, Yanhu LIU, Yuxi CHU, Xiaoyuan XU, Jin ZHANG, Yikai LI, Rong FENG, Biao YANG, Bo HU, Xiaoying YANG. Research progress on the safety assessment of lithium-ion battery energy storage [J]. Energy Storage Science and Technology, 2023, 12(7): 2282-2301. |
[6] | Jiayi ZHANG, Suting WENG, Zhaoxiang WANG, Xuefeng WANG. Solid electrolyte interphase (SEI) on graphite anode correlated with thermal runaway of lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2105-2118. |
[7] | Zhiwei CHEN, Weige ZHANG, Junwei ZHANG, Yanru ZHANG. Comprehensive health assessment and screening method of power battery pack based on visual characteristics of charge curves [J]. Energy Storage Science and Technology, 2023, 12(7): 2211-2219. |
[8] | Chong XU, Ning XU, Zhimin JIANG, Zhongkai LI, Yang HU, Hong YAN, Guoqiang MA. Mechanisms of gas evolution and suppressing strategies based on the electrolyte in lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2119-2133. |
[9] | Xijiang SHEN, Qiangling DUAN, Peng QIN, Qingsong WANG, Jinhua SUN. Experimental study on thermal runaway mitigation and heat transfer characteristics of ternary lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(6): 1862-1871. |
[10] | Lingfeng HUANG, Dongmei HAN, Sheng HUANG, Shuanjin WANG, Min XIAO, Yuezhong MENG. Research progress of polymer electrolytes containing organoboron for lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(6): 1815-1830. |
[11] | Birong TAN, Jianhua DU, Xianghu YE, Xin CAO, Chang QU. Overview of SOC estimation methods for lithium-ion batteries based on model [J]. Energy Storage Science and Technology, 2023, 12(6): 1995-2010. |
[12] | Ya CHEN, Liyun FAN, Jingxue LI, Meisi LI, Chao XU, Yuanqi GU. Research on heat dissipation of lithium-ion batteries with secondary flow serpentine channel [J]. Energy Storage Science and Technology, 2023, 12(6): 1880-1889. |
[13] | Jidong ZHANG, Zhan YANG, Jianguo HUANG. Fabrication and electrochemical performance of micro-nanostructured C/TiO2/CuMoO4 fibrous composite based on natural cellulose [J]. Energy Storage Science and Technology, 2023, 12(5): 1616-1624. |
[14] | Yuanchang DONG, Xiaoqiong PANG, Jianfang JIA, Yuanhao SHI, Jie WEN, Xiao LI, Xin ZHANG. Remaining useful life prediction of lithium-ion batteries based on SVD-SAE-GPR [J]. Energy Storage Science and Technology, 2023, 12(4): 1257-1267. |
[15] | Feng LIU, Haizhong CHEN. Lithium-ion battery state prediction based on CEEMDAN and ISOA-ELM [J]. Energy Storage Science and Technology, 2023, 12(4): 1244-1256. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||