Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (11): 3545-3555.doi: 10.19799/j.cnki.2095-4239.2023.0512
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Shuang SONG1(), Fu LI1,2, Xisheng TANG1,2()
Received:
2023-07-31
Revised:
2023-08-29
Online:
2023-11-05
Published:
2023-11-16
Contact:
Xisheng TANG
E-mail:songshuangiee@mail.iee.ac.cn;tang@mail.iee.ac.cn
CLC Number:
Shuang SONG, Fu LI, Xisheng TANG. Research progress on the safety-state assessment of lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(11): 3545-3555.
1 | 陈海生, 李泓, 马文涛, 等. 2021年中国储能技术研究进展[J]. 储能科学与技术, 2022, 11(3): 1052-1076. |
CHEN H S, LI H, MA W T, et al. Research progress of energy storage technology in China in 2021[J]. Energy Storage Science and Technology, 2022, 11(3): 1052-1076. | |
2 | 唐亮, 尹小波, 吴候福, 等. 电化学储能产业发展对安全标准的需求[J]. 储能科学与技术, 2022, 11(8): 2645-2652. |
TANG L, YIN X B, WU H F, et al. Demand for safety standards in the development of the electrochemical energy storage industry[J]. Energy Storage Science and Technology, 2022, 11(8): 2645-2652. | |
3 | ABADA S, MARLAIR G, LECOCQ A, et al. Safety focused modeling of lithium-ion batteries: A review[J]. Journal of Power Sources, 2016, 306: 178-192. |
4 | DENG J, BAE C, MARCICKI J, et al. Safety modelling and testing of lithium-ion batteries in electrified vehicles[J]. Nature Energy, 2018, 3(4): 261-266. |
5 | GANDOMAN F H, JAGUEMONT J, GOUTAM S, et al. Concept of reliability and safety assessment of lithium-ion batteries in electric vehicles: Basics, progress, and challenges[J]. Applied Energy, 2019, 251: 113343. |
6 | 孙振宇, 王震坡, 刘鹏, 等. 新能源汽车动力电池系统故障诊断研究综述[J]. 机械工程学报, 2021, 57(14): 87-104. |
SUN Z Y, WANG Z P, LIU P, et al. Overview of fault diagnosis in new energy vehicle power battery system[J]. Journal of Mechanical Engineering, 2021, 57(14): 87-104. | |
7 | 刘同宇, 李师, 付卫东, 等. 大容量磷酸铁锂动力电池热失控预警策略研究[J]. 中国安全科学学报, 2021, 31(11): 120-126. |
LIU T Y, LI S, FU W D, et al. Study on early warning strategy of large LFP traction battery's thermal runaway[J]. China Safety Science Journal, 2021, 31(11): 120-126. | |
8 | 周洋捷, 王震坡, 洪吉超, 等. 新能源汽车动力电池"过充电-热失控"安全防控技术研究综述[J]. 机械工程学报, 2022, 58(10): 112-135. |
ZHOU Y J, WANG Z P, HONG J C, et al. Review of overcharge-to-thermal runaway and the control strategy for lithium-ion traction batteries in electric vehicles[J]. Journal of Mechanical Engineering, 2022, 58(10): 112-135. | |
9 | 山彤欣, 王震坡, 洪吉超, 等. 新能源汽车动力电池"机械滥用-热失控"及其安全防控技术综述[J]. 机械工程学报, 2022, 58(14): 252-275. |
SHAN T X, WANG Z P, HONG J C, et al. Overview of "mechanical abuse-thermal runaway" of electric vehicle power battery and its safety prevention and control technology[J]. Journal of Mechanical Engineering, 2022, 58(14): 252-275. | |
10 | 芮新宇, 冯旭宁, 韩雪冰, 等. 锂离子电池热失控蔓延问题研究综述[J]. 电池工业, 2020, 24(4): 193-201, 205. |
RUI X Y, FENG X N, HAN X B, et al. Review on the thermal runaway propagation of lithium-ion batteries[J]. Chinese Battery Industry, 2020, 24(4): 193-201, 205. | |
11 | 金阳. 锂离子电池储能电站早期安全预警及防护[M]. 北京: 机械工业出版社, 2022. |
JIN Y. Early safety warning and protection lithium-ion battery storage power station[M]. Beijing: China Machine Press, 2022. | |
12 | XIA Q, WANG Z L, REN Y, et al. A reliability design method for a lithium-ion battery pack considering the thermal disequilibrium in electric vehicles[J]. Journal of Power Sources, 2018, 386: 10-20. |
13 | 于璐, 张辉, 田培根, 等. 一种退役动力电池梯次利用储能系统安全评估方法[J]. 太阳能学报, 2022, 43(5): 446-453. |
YU L, ZHANG H, TIAN P G, et al. A battery safety evaluation method for reuse of retired power battery in energy storage system[J]. Acta Energiae Solaris Sinica, 2022, 43(5): 446-453. | |
14 | 朱振威, 邱景义, 王莉, 等. 人工智能在锂离子电池研发中的应用[J]. 电化学, 2022, 28(12): 3-22. |
ZHU Z W, QIU J Y, WANG L, et al. Application of artificial intelligence to lithium-ion battery research and development[J]. Journal of Electrochemistry, 2022, 28(12): 3-22. | |
15 | HU X S, ZHANG K, LIU K L, et al. Advanced fault diagnosis for lithium-ion battery systems: A review of fault mechanisms, fault features, and diagnosis procedures[J]. IEEE Industrial Electronics Magazine, 2020, 14(3): 65-91. |
16 | LYU N W, JIN Y, XIONG R, et al. Real-time overcharge warning and early thermal runaway prediction of Li-ion battery by online impedance measurement[J]. IEEE Transactions on Industrial Electronics, 2022, 69(2): 1929-1936. |
17 | DEY S, SHI Y, SMITH K, et al. Safer batteries via active fault tolerant control[C]// 2019 American Control Conference (ACC). July 10-12, 2019, Philadelphia, PA, USA. IEEE, 2019: 1561-1566. |
18 | LU L G, HAN X B, LI J Q, et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources, 2013, 226: 272-288. |
19 | International SAE, Electric and hybrid electric vehicle rechargeable energy storage system (RESS) safety and abuse testing: Surface Vehicle Recommended Practice SAEJ2464[R], 2009. |
20 | CABRERA-CASTILLO E, NIEDERMEIER F, JOSSEN A. Calculation of the state of safety (SOS) for lithium ion batteries[J]. Journal of Power Sources, 2016, 324: 509-520. |
21 | ASHTIANI C. Analysis of battery safety and hazards' risk mitigation[J]. ECS Transactions, 2008, 11(19): 1-11. |
22 | KOCH D, SCHWEIGER H G. Possibilities for a quick onsite safety-state assessment of stand-alone lithium-ion batteries[J]. Batteries, 2022, 8(11): 213. |
23 | 于璐, 张辉, 田培根, 等. 一种梯次利用电池可重构储能系统多级在线安全评估及风险预警定位方法[J]. 太阳能学报, 2022, 43(5): 461-467. |
YU L, ZHANG H, TIAN P G, et al. Multi-level on-line safety assessment of reconfigurable energy storage system using secondary batteries risk warning postitioning method[J]. Acta Energiae Solaris Sinica, 2022, 43(5): 461-467. | |
24 | MOHAMMADI F, SANJARI M, SAIF M. A real-time blockchain-based state estimation system for battery energy storage systems[C]// 2022 IEEE Kansas Power and Energy Conference (KPEC). April 25-26, 2022, Manhattan, KS, USA. IEEE, 2022: 1-4. |
25 | 李焓宁, 李相俊. 考虑电池安全状态的储能电站能量管理策略[J]. 供用电, 2023, 40(8): 21-27. |
LI H N, LI X J. Energy management strategy for energy storage stations considering battery state of safety[J]. Distribution & Utilization, 2023, 40(8): 21-27. | |
26 | QI C, ZHU Y L, GAO F, et al. Safety analysis of lithium-ion battery by rheology-mutation theory coupling with fault tree method[J]. Journal of Loss Prevention in the Process Industries, 2017, 49: 603-611. |
27 | BRIK K, BEN AMMAR F. Causal tree analysis of depth degradation of the lead acid battery[J]. Journal of Power Sources, 2013, 228: 39-46. |
28 | HU G F, HUANG P F, BAI Z H, et al. Comprehensively analysis the failure evolution and safety evaluation of automotive lithium ion battery[J]. eTransportation, 2021, 10: 100140. |
29 | HUANG P F, HU G F, YONG Z, et al. Fire risk assessment of battery transportation and storage by combining fault tree analysis and fuzzy logic[J]. Journal of Loss Prevention in the Process Industries, 2022, 77: 104774. |
30 | 黄沛丰. 锂离子电池火灾危险性及热失控临界条件研究[D]. 合肥: 中国科学技术大学, 2018. |
HUANG P F. Research on the fire risk of lithium ion battery and the critical condition of thermal runaway behavior[D]. Hefei: University of Science and Technology of China, 2018. | |
31 | TAN X J, QIU J Z, LI J, et al. Lithium plating as limiting phenomena for estimating safety during lithium-ion battery charging[J]. International Journal of Electrochemical Science, 2020, 15(9): 9233-9244. |
32 | DU J Y, LIU Y, MO X Y, et al. Impact of high-power charging on the durability and safety of lithium batteries used in long-range battery electric vehicles[J]. Applied Energy, 2019, 255: 113793. |
33 | 王怀铷. 磷酸铁锂储能电池过充热失控特性研究[D]. 郑州: 郑州大学, 2021. |
WANG H R. Research on overcharging thermal runaway characteristic of lithium iron phosphate energy storage battery[D]. Zhengzhou: Zhengzhou University, 2021. | |
34 | 任东生, 冯旭宁, 韩雪冰, 等. 锂离子电池全生命周期安全性演变研究进展[J]. 储能科学与技术, 2018, 7(6): 957-966. |
REN D S, FENG X N, HAN X B, et al. Recent progress on evolution of safety performance of lithium-ion battery during aging process[J]. Energy Storage Science and Technology, 2018, 7(6): 957-966. | |
35 | 王绥军. 基于负极界面副反应的锂离子电池性能失效研究[D]. 天津: 天津大学, 2020. |
WANG S J. A study on performance failure of lithium ion batteries via anodic side reactions[D]. Tianjin: Tianjin University, 2020. | |
36 | 黄海江. 锂离子电池安全性研究及影响因素分析[D]. 上海: 中国科学院研究生院(上海微系统与信息技术研究所), 2005. |
HUANG H J. Study on safety of lithium-ion batteries[D]. Shanghai: Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 2005. | |
37 | 李磊, 李钊, 姬丹, 等. 过充电触发的LFP和NCM锂离子电池的热失控行为: 差异与原因[J]. 储能科学与技术, 2022, 11(5): 1419-1427. |
LI L, LI Z, JI D, et al. Overcharge induced thermal runaway behaviors of pouch-type lithium-ion batteries with LFP and NCM cathodes: The differences and reasons[J]. Energy Storage Science and Technology, 2022, 11(5): 1419-1427. | |
38 | 马天翼, 王芳, 徐大鹏, 等. 动力电池轻度电滥用积累造成的性能和安全性劣化研究[J]. 储能科学与技术, 2020, 9(2): 400-408. |
MA T Y, WANG F, XU D P, et al. Investigation of the performance and safety degradation caused by slight accumulation of electricity in traction batteries[J]. Energy Storage Science and Technology, 2020, 9(2): 400-408. | |
39 | 贺浩. 磷酸铁锂18650动力锂离子电池失效机理及动态脱嵌锂机理研究[D]. 长沙: 湖南大学, 2016. |
HE H. The failure mechanism and dynamic lithium intercalation/deintercalation mechanism of the LiFePO4 Li ion power battery[D]. Changsha: Hunan University, 2016. | |
40 | 黄德扬, 陈自强, 周诗尧, 等. 极寒环境下动力锂离子电池特性[J]. 上海交通大学学报, 2019, 53(9): 1051-1057. |
HUANG D Y, CHEN Z Q, ZHOU S Y, et al. Characteristics of power lithium-ion batteries at extreme cold environment[J]. Journal of Shanghai Jiao Tong University, 2019, 53(9): 1051-1057. | |
41 | 陈虎, 厉运杰, 李新峰, 等. 圆柱形LiFePO4锂离子电池高温循环失效分析[J]. 电池, 2022, 52(1): 71-74. |
CHEN H, LI Y J, LI X F, et al. Analysis of elevated temperature cycling failure of cylindrical LiFePO4 Li-ion battery[J]. Battery Bimonthly, 2022, 52(1): 71-74. | |
42 | 冯旭宁. 车用锂离子动力电池热失控诱发与扩展机理、建模与防控[D]. 北京: 清华大学, 2016. |
FENG X N. Thermal runaway initiation and propagation of lithium-ion traction battery for electric vehicle: Test, modeling and prevention[D]. Beijing: Tsinghua University, 2016. | |
43 | KATZER F, MÖßLE P, SCHAMEL M, et al. Adaptive fast charging control using impedance-based detection of lithium deposition[J]. Journal of Power Sources, 2023, 555: 232354. |
44 | LIN X K, KHOSRAVINIA K, HU X S, et al. Lithium plating mechanism, detection, and mitigation in lithium-ion batteries[J]. Progress in Energy and Combustion Science, 2021, 87: 100953. |
45 | SCHINDLER S, BAUER M, PETZL M, et al. Voltage relaxation and impedance spectroscopy as in-operando methods for the detection of lithium plating on graphitic anodes in commercial lithium-ion cells[J]. Journal of Power Sources, 2016, 304: 170-180. |
46 | ECKER M, SHAFIEI SABET P, SAUER D U. Influence of operational condition on lithium plating for commercial lithium-ion batteries-Electrochemical experiments and post-mortem-analysis[J]. Applied Energy, 2017, 206: 934-946. |
47 | LEISING R A, PALAZZO M J, TAKEUCHI E S, et al. Abuse testing of lithium-ion batteries: Characterization of the overcharge reaction of LiCoO2/graphite cells[J]. Journal of the Electrochemical Society, 2001, 148(8): A838. |
48 | 李奎杰, 楼平, 管敏渊, 等. 锂离子电池热失控多维信号演化及耦合机制研究综述[J]. 储能科学与技术, 2023, 12(3): 899-912. |
LI K J, LOU P, GUAN M Y, et al. A review of multi-dimensional signal evolution and coupling mechanism of lithium-ion battery thermal runaway[J]. Energy Storage Science and Technology, 2023, 12(3): 899-912. | |
49 | 许辉勇, 范亚飞, 张志萍, 等. 针刺和挤压作用下动力电池热失控特性与机理综述[J]. 储能科学与技术, 2020, 9(4): 1113-1126. |
XU H Y, FAN Y F, ZHANG Z P, et al. Thermal runaway characteristics and mechanisms of Li-ion batteries for electric vehicles under nail penetration and crush[J]. Energy Storage Science and Technology, 2020, 9(4): 1113-1126. | |
50 | 裴普成, 陈嘉瑶, 吴子尧. 锂离子电池自放电机理及测量方法[J]. 清华大学学报(自然科学版), 2019, 59(1): 53-65. |
PEI P C, CHEN J Y, WU Z Y. Self-discharge mechanism and measurement methods for lithium ion batteries[J]. Journal of Tsinghua University (Science and Technology), 2019, 59(1): 53-65. | |
51 | OUYANG M G, REN D S, LU L G, et al. Overcharge-induced capacity fading analysis for large format lithium-ion batteries with LiyNi1/3Co1/3Mn1/3O2+LiyMn2O4 composite cathode[J]. Journal of Power Sources, 2015, 279: 626-635. |
52 | ROTH E P, DOUGHTY D H. Thermal abuse performance of high-power 18650 Li-ion cells[J]. Journal of Power Sources, 2004, 128(2): 308-318. |
53 | TOBISHIMA S, YAMAKI J, HIRAI T. Safety and capacity retentionof lithium ion cells after long periods of storage[J]. Journal of Applied Electrochemistry, 2000, 30(4): 405-410. |
54 | STIASZNY B, ZIEGLER J C, KRAUß E E, et al. Electrochemical characterization and post-mortem analysis of aged LiMn2O4-Li(Ni0.5Mn0.3Co0.2)O2/graphite lithium ion batteries. Part I: Cycle aging[J]. Journal of Power Sources, 2014, 251: 439-450. |
55 | STIASZNY B, ZIEGLER J C, KRAUß E E, et al. Electrochemical characterization and post-mortem analysis of aged LiMn2O4-NMC/graphite lithium ion batteries part Ⅱ: Calendar aging[J]. Journal of Power Sources, 2014, 258: 61-75. |
56 | PAN Y, REN D S, HAN X B, et al. Lithium plating detection based on electrochemical impedance and internal resistance analyses[J]. Batteries, 2022, 11(8): 206. |
57 | MC CARTHY K, GULLAPALLI H, KENNEDY T. Real-time internal temperature estimation of commercial Li-ion batteries using online impedance measurements[J]. Journal of Power Sources, 2022, 519: 230786. |
58 | DOTOLI M, MILO E, GIULIANO M, et al. Detection of lithium plating in Li-ion cell anodes using realistic automotive fast-charge profiles[J]. Batteries, 2021, 7(3): 46. |
59 | HAHN M, GRÜNE L, PLANK C, et al. Model predictive fast charging control by means of a real-time discrete electrochemical model[J]. Journal of Energy Storage, 2021, 42: 103056. |
60 | JANAKIRAMAN U, GARRICK T R, FORTIER M E. Review—Lithium plating detection methods in Li-ion batteries[J]. Journal of the Electrochemical Society, 2020, 167: 160552. |
61 | GAO X L, LIU X H, XIE W L, et al. Multiscale observation of Li plating for lithium-ion batteries[J]. Rare Metals, 2021, 40(11): 3038-3048. |
62 | RUAN H J, BARRERAS J V, ENGSTROM T, et al. Lithium-ion battery lifetime extension: A review of derating methods[J]. Journal of Power Sources, 2023, 563: 232805. |
63 | TIAN Y, LIN C, LI H L, et al. Detecting undesired lithium plating on anodes for lithium-ion batteries-A review on the in situ methods[J]. Applied Energy, 2021, 300: 117386. |
[1] | Wenhui LI, Yonghan JIAO, Ge GUO, Jiajun LI, Jianqiang DENG. Research on improving cooling performance of compressed air energy storage system [J]. Energy Storage Science and Technology, 2023, 12(9): 2833-2841. |
[2] | Xiaowei HUANG, Shaopeng LI, Xiaogang ZHANG. Research on the impact and mechanism of the lithium replenishment degree of anode prelithiation on the performance of lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(9): 2727-2734. |
[3] | Xin GAO, Ruogu WANG, Wenjing GAO, Zejun DENG, Ruiqi LIANG, Kun YANG. Consistency evaluation method of battery pack in energy storage power station based on running data [J]. Energy Storage Science and Technology, 2023, 12(9): 2937-2945. |
[4] | Yonghao HUANG, Guojing ZANG, Weiya ZHU, Youhao LIAO, Weishan LI. Enhancing interfacial stability between lithium-containing ceramic separator and 4.35 V LiNi0.8Co0.1Mn0.1O2 cathode through LiF additives [J]. Energy Storage Science and Technology, 2023, 12(8): 2361-2369. |
[5] | Zhiwei CHEN, Weige ZHANG, Junwei ZHANG, Yanru ZHANG. Comprehensive health assessment and screening method of power battery pack based on visual characteristics of charge curves [J]. Energy Storage Science and Technology, 2023, 12(7): 2211-2219. |
[6] | Chong XU, Ning XU, Zhimin JIANG, Zhongkai LI, Yang HU, Hong YAN, Guoqiang MA. Mechanisms of gas evolution and suppressing strategies based on the electrolyte in lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2119-2133. |
[7] | Jin LI, Qingsong WANG, Depeng KONG, Xiaodong WANG, Zhenhua YU, Yanfei LE, Xinyan HUANG, Zhenkai HU, Houfu WU, Huabin FANG, Caowei, Shaoyu ZHANG, Ping ZHUO, Ye CHEN, Ziting LI, Wenxin MEI, Yue ZHANG, Lixiang ZHAO, Liang TANG, Zonghou HUANG, Chi CHEN, Yanhu LIU, Yuxi CHU, Xiaoyuan XU, Jin ZHANG, Yikai LI, Rong FENG, Biao YANG, Bo HU, Xiaoying YANG. Research progress on the safety assessment of lithium-ion battery energy storage [J]. Energy Storage Science and Technology, 2023, 12(7): 2282-2301. |
[8] | Jiayi ZHANG, Suting WENG, Zhaoxiang WANG, Xuefeng WANG. Solid electrolyte interphase (SEI) on graphite anode correlated with thermal runaway of lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2105-2118. |
[9] | Qixin GAO, Jingteng ZHAO, Guoxing LI. Research progress on fast-charging lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2166-2184. |
[10] | Hongjian WANG, Yongchun LAI, Xianjin SU, Chunbao ZENG, Linyi XU. Solutions for new energy construction projects in extreme operating environments and liquid cooled energy storage [J]. Energy Storage Science and Technology, 2023, 12(7): 2349-2354. |
[11] | Xijiang SHEN, Qiangling DUAN, Peng QIN, Qingsong WANG, Jinhua SUN. Experimental study on thermal runaway mitigation and heat transfer characteristics of ternary lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(6): 1862-1871. |
[12] | Lingfeng HUANG, Dongmei HAN, Sheng HUANG, Shuanjin WANG, Min XIAO, Yuezhong MENG. Research progress of polymer electrolytes containing organoboron for lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(6): 1815-1830. |
[13] | Birong TAN, Jianhua DU, Xianghu YE, Xin CAO, Chang QU. Overview of SOC estimation methods for lithium-ion batteries based on model [J]. Energy Storage Science and Technology, 2023, 12(6): 1995-2010. |
[14] | Xuchang CHEN, Yufei WANG, Hua XUE. Optimal operation method of energy storage system in a data center based on MDP-ADMM algorithm [J]. Energy Storage Science and Technology, 2023, 12(6): 1890-1900. |
[15] | Ya CHEN, Liyun FAN, Jingxue LI, Meisi LI, Chao XU, Yuanqi GU. Research on heat dissipation of lithium-ion batteries with secondary flow serpentine channel [J]. Energy Storage Science and Technology, 2023, 12(6): 1880-1889. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||