Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (2): 339-348.doi: 10.19799/j.cnki.2095-4239.2022.0632
• Energy Storage Materials and Devices • Previous Articles Next Articles
Deliu ZHANG1(), Yan ZHANG1, Hai WANG1,2, Jiadong WANG2, Xuanwen GAO1(), Chaomeng LIU1, Dongrun YANG1, Wenbin LUO1
Received:
2022-10-28
Revised:
2022-11-25
Online:
2023-02-05
Published:
2023-02-24
Contact:
Xuanwen GAO
E-mail:2071645@stu.neu.edu.cn;gaoxuanwen@ mail.neu.edu.cn
CLC Number:
Deliu ZHANG, Yan ZHANG, Hai WANG, Jiadong WANG, Xuanwen GAO, Chaomeng LIU, Dongrun YANG, Wenbin LUO. Optimization of high nickel cathode materials for lithium ion batteries by magnesium doped heterogeneous aluminum oxide coating[J]. Energy Storage Science and Technology, 2023, 12(2): 339-348.
1 | YE Z C, QIU L, YANG W, et al. Nickel-rich layered cathode materials for lithium-ion batteries[J]. Chemistry (Weinheim an Der Bergstrasse, Germany), 2021, 27(13): 4249-4269. |
2 | SUN Y K, MYUNG S T, PARK B C, et al. High-energy cathode material for long-life and safe lithium batteries[J]. Nature Materials, 2009, 8(4): 320-324. |
3 | SUN Y K, CHEN Z H, NOH H J, et al. Nanostructured high-energy cathode materials for advanced lithium batteries[J]. Nature Materials, 2012, 11(11): 942-947. |
4 | SUN H H, KIM U H, PARK J H, et al. Transition metal-doped Ni-rich layered cathode materials for durable Li-ion batteries[J]. Nature Communications, 2021, 12: doi: 10.1038/s41467-021-26815-6. |
5 | MYUNG S T, MAGLIA F, PARK K J, et al. Nickel-rich layered cathode materials for automotive lithium-ion batteries: Achievements and perspectives[J]. ACS Energy Letters, 2017, 2(1): 196-223. |
6 | KIM J, LEE H, CHA H, et al. Prospect and reality of Ni-rich cathode for commercialization[J]. Advanced Energy Materials, 2018, 8(6): doi: 10.1002/aenm.201702028. |
7 | LU L G, HAN X B, LI J Q, et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources, 2013, 226: 272-288. |
8 | ZUBI G, DUFO-LÓPEZ R, CARVALHO M, et al. The lithium-ion battery: State of the art and future perspectives[J]. Renewable and Sustainable Energy Reviews, 2018, 89: 292-308. |
9 | KIM U H, PARK J H, AISHOVA A, et al. Microstructure engineered Ni-rich layered cathode for electric vehicle batteries[J]. Advanced Energy Materials, 2021, 11(25): doi: 10.1002/aenm.202100884. |
10 | SONG L B, DU J L, XIAO Z L, et al. Research progress on the surface of high-nickel nickel-cobalt-Manganese ternary cathode materials: A mini review[J]. Frontiers in Chemistry, 2020, 8: doi: 10.3389/fchem.2020.00761. |
11 | 陈绍军, 丁波, 丁安莉, 等. Na+掺杂对LiNi0.8Co0.1Mn0.1O2正极材料电化学性能的影响[J]. 材料科学与工程学报, 2021, 39(5): 843-846. |
CHEN S J, DING B, DING A L, et al. Effect of Na+ doping on electrochemical properties of Lini0.8Co0.1Mn0.1O2 improved by doping sodium ions[J]. Journal of Materials Science and Engineering, 2021, 39(5): 843-846. | |
12 | LI M, LU J. Cobalt in lithium-ion batteries[J]. Science, 2020, 367(6481): 979-980. |
13 | YU H J, QIAN Y M, OTANI M, et al. Study of the lithium/nickel ions exchange in the layered LiNi0.42Mn0.42Co0.16O2 cathode material for lithium ion batteries: Experimental and first-principles calculations[J]. Energy & Environmental Science, 2014, 7(3): 1068-1078. |
14 | GILBERT J A, SHKROB I A, ABRAHAM D P. Transition metal dissolution, ion migration, electrocatalytic reduction and capacity loss in lithium-ion full cells[J]. Journal of the Electrochemical Society, 2017, 164(2): doi: 10.1149/2.1111702jes. |
15 | HUANG B, LI X H, WANG Z X, et al. Synthesis of Mg-doped LiNi0.8Co0.15Al0.05O2 oxide and its electrochemical behavior in high-voltage lithium-ion batteries[J]. Ceramics International, 2014, 40(8): 13223-13230. |
16 | SUSAI F A, KOVACHEVA D, CHAKRABORTY A, et al. Improving performance of LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium-ion batteries by doping with molybdenum-ions: Theoretical and experimental studies[J]. ACS Applied Energy Materials, 2019, 2(6): 4521-4534. |
17 | ZHANG D K, LIU Y, WU L, et al. Effect of Ti ion doping on electrochemical performance of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode material[J]. Electrochimica Acta, 2019, 328: doi: 10.1016/j.electacta.2019.135086. |
18 | HE T, LU Y, SU Y F, et al. Sufficient utilization of zirconium ions to improve the structure and surface properties of nickel-rich cathode materials for lithium-ion batteries[J]. ChemSusChem, 2018, 11(10): 1639-1648. |
19 | KIM U H, JUN D W, PARK K J, et al. Pushing the limit of layered transition metal oxide cathodes for high-energy density rechargeable Li ion batteries[J]. Energy & Environmental Science, 2018, 11(5): 1271-1279. |
20 | LEI Y K, AI J J, YANG S, et al. Nb-doping in LiNi0.8Co0.1Mn0.1O2 cathode material: Effect on the cycling stability and voltage decay at high rates[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 97: 255-263. |
21 | LI L J, WANG Z X, LIU Q C, et al. Effects of chromium on the structural, surface chemistry and electrochemical of layered LiNi0.8- xCo0.1Mn0.1CrxO2[J]. Electrochimica Acta, 2012, 77: 89-96. |
22 | ZHANG M Y, WANG C Y, ZHANG J K, et al. Preparation and electrochemical characterization of La and Al Co-doped NCM811 cathode materials[J]. ACS Omega, 2021, 6(25): 16465-16471. |
23 | LIU X L, WANG S, WANG L, et al. Stabilizing the high-voltage cycle performance of LiNi0.8Co0.1Mn0.1O2 cathode material by Mg doping[J]. Journal of Power Sources, 2019, 438: doi: 10.1016/j.jpowsour.2019.227017. |
24 | HUANG Z J, WANG Z X, GUO H J, et al. Influence of Mg2+ doping on the structure and electrochemical performances of layered LiNi0.6Co0.2- xMn0.2MgxO2 cathode materials[J]. Journal of Alloys and Compounds, 2016, 671: 479-485. |
25 | SATTAR T, LEE S H, SIM S J, et al. Effect of Mg-doping on the electrochemical performance of LiNi0.84Co0.11Mn0.05O2 cathode for lithium ion batteries[J]. International Journal of Hydrogen Energy, 2020, 45(38): 19567-19576. |
26 | 赵航, 魏闯, 康鑫, 等. 锂离子电池三元正极材料的研究进展[J]. 中国陶瓷, 2020, 56(5): 10-15. |
ZHAO H, WEI C, KANG X, et al. Research progress of ternary cathode materials for lithium ion battery[J]. China Ceramics, 2020, 56(5): 10-15. | |
27 | LIU B S, SUI X L, ZHANG S H, et al. Investigation on electrochemical performance of LiNi0.8Co0.15Al0.05O2 coated by heterogeneous layer of TiO2[J]. Journal of Alloys and Compounds, 2018, 739: 961-971. |
28 | GAN Z G, HU G R, PENG Z D, et al. Surface modification of LiNi0.8Co0.1Mn0.1O2 by WO3 as a cathode material for LIB[J]. Applied Surface Science, 2019, 481: 1228-1238. |
29 | YAO L, LIANG F Q, JIN J, et al. Improved electrochemical property of Ni-rich LiNi0.6Co0.2Mn0.2O2 cathode via in situ ZrO2 coating for high energy density lithium ion batteries[J]. Chemical Engineering Journal, 2020, 389: doi: 10.1016/j.cej.2020.124403. |
30 | NEUDECK S, STRAUSS F, GARCIA G, et al. Room temperature, liquid-phase Al2O3 surface coating approach for Ni-rich layered oxide cathode material[J]. Chemical Communications (Cambridge, England), 2019, 55(15): 2174-2177. |
31 | LI Y J, ZHU J, DENG S Y, et al. Towards superior cyclability of LiNi0.8Co0.1Mn0.1O2 cathode material for lithium ion batteries via synergetic effects of Sb modification[J]. Journal of Alloys and Compounds, 2019, 798: 93-103. |
32 | HEMMELMANN H, DINTER J K, ELM M T. Thin film NCM cathodes as model systems to assess the influence of coating layers on the electrochemical performance of lithium ion batteries[J]. Advanced Materials Interfaces, 2021, 8(9): doi: 10.1002/admi.202002074. |
33 | ZHAO L N, CHEN G R, WENG Y H, et al. Precise Al2O3 coating on LiNi0.5Co0.2Mn0.3O2 by atomic layer deposition restrains the shuttle effect of transition metals in Li-ion capacitors[J]. Chemical Engineering Journal, 2020, 401: doi: 10.1016/j.cej.2020.126138. |
34 | GAO S, WANG L J, ZHOU C Y, et al. In-situ construction protective layer and phosphate doping synergistically improve the long-term cycle stability of LiNi0.6Co0.1Mn0.3O2[J]. Chemical Engineering Journal, 2021, 426: doi: 10.1016/j.cej.2021.131359. |
35 | LI Y C, XIANG W, XIAO Y, et al. Synergy of doping and coating induced heterogeneous structure and concentration gradient in Ni-rich cathode for enhanced electrochemical performance[J]. Journal of Power Sources, 2019, 423: 144-151. |
36 | YU H F, ZHU H W, YANG Z F, et al. Bulk Mg-doping and surface polypyrrole-coating enable high-rate and long-life for Ni-rich layered cathodes[J]. Chemical Engineering Journal, 2021, 412: doi: 10.1016/j.cej.2021.128625. |
37 | YANG G C, PAN K, LAI F Y, et al. Integrated co-modification of PO 4 3 - polyanion doping and Li2TiO3 coating for Ni-rich layered LiNi0.6Co0.2Mn0.2O2 cathode material of Lithium-Ion batteries[J]. Chemical Engineering Journal, 2021, 421: doi: 10.1016/j.cej.2021.129964. |
38 | SHEN J X, DENG D, LI X, et al. Realizing ultrahigh-voltage performance of single-crystalline LiNi0.55Co0.15Mn0.3O2 cathode materials by simultaneous Zr-doping and B2O3-coating[J]. Journal of Alloys and Compounds, 2022, 903: doi: 10.1016/j.jallcom. 2022.163999. |
39 | 倪闯将, 刘亚飞, 陈彦彬, 等. 镍钴锰三元材料的结构及改性研究进展[J]. 电源技术, 2021, 45(1): 123-126. |
NI C J, LIU Y F, CHEN Y B, et al. Research progress of structure and modification of Li(NixCoyMnz)O2 ternary materials[J]. Chinese Journal of Power Sources, 2021, 45(1): 123-126. | |
40 | HUANG B, WANG M, ZHAO Z Y, et al. Effects of the strong oxidant treatment of precursor on the electrochemical properties of LiNi0.8Mn0.1Co0.1O2 for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2019, 810: doi: 10.1016/j.jallcom.2019.151800. |
41 | 芦志刚, 李延伟, 姜吉琼, 等. 不同锂源对高温固相法制备NCM811正极材料储锂性能的影响[J]. 稀有金属材料与工程, 2021, 50(10): 3757-3764. |
LU Z G, LI Y W, JIANG J Q, et al. Influence of lithium sources on the lithium ion storage performance of NCM811 cathode materials prepared by high-temperature solid-state reaction method[J]. Rare Metal Materials and Engineering, 2021, 50(10): 3757-3764. | |
42 | ZHANG R, WANG C Y, ZOU P C, et al. Compositionally complex doping for zero-strain zero-cobalt layered cathodes[J]. Nature, 2022, 610(7930): 67-73. |
43 | HUANG J, FANG X, WU Y N, et al. Enhanced electrochemical performance of LiNi0.8Co0.1Mn0.1O2 by surface modification with lithium-active MoO3[J]. Journal of Electroanalytical Chemistry, 2018, 823: 359-367. |
44 | LV Y T, CHENG X, QIANG W J, et al. Improved electrochemical performances of Ni-rich LiNi0.83Co0.12Mn0.05O2 by Mg-doping[J]. Journal of Power Sources, 2020, 450: doi: 10.1016/j.jpowsour. 2020.227718. |
45 | LIU J, ZOU Z G, ZHONG S L, et al. Improved electrochemical performance of magnesium-doped LiNi0.8- xMgxCo0.1Mn0.1O2 by CTAB-assisted solvothermal and calcining method[J]. Ionics, 2021, 27(4): 1501-1509. |
46 | ROITZHEIM C, KUO L Y, SOHN Y J, et al. Boron in Ni-rich NCM811 cathode material: Impact on atomic and microscale properties[J]. ACS Applied Energy Materials, 2022, 5(1): 524-538. |
47 | YAN W W, YANG S Y, HUANG Y Y, et al. A review on doping/coating of nickel-rich cathode materials for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2020, 819: doi: 10.1016/j.jallcom.2019.153048. |
48 | ZAHRA A, KONG X Z, EKATERINA F, et al. Extensive comparison of doping and coating strategies for Ni-rich positive electrode materials[J]. Journal of Power Sources, 2022, 540: doi: 10.1016/j.jpowsour.2022.231633. |
49 | LI C, ZHANG H P, FU L J, et al. Cathode materials modified by surface coating for lithium ion batteries[J]. Electrochimica Acta, 2006, 51(19): 3872-3883. |
50 | HUANG Z J, WANG Z X, ZHENG X B, et al. Effect of Mg doping on the structural and electrochemical performance of LiNi0.6 Co0.2Mn0.2O2 cathode materials[J]. Electrochimica Acta, 2015, 182: 795-802. |
51 | XI X S, FAN Y Y, LIU Y C, et al. Enhanced cyclic stability of NCM-622 cathode by Ti3+ doped TiO2 coating[J]. Journal of Alloys and Compounds, 2021, 872: doi: 10.1016/j.jallcom.2021.159664. |
52 | RENFREW S E, MCCLOSKEY B D. Residual lithium carbonate predominantly accounts for first cycle CO2 and CO outgassing of Li-stoichiometric and Li-rich layered transition-metal oxides[J]. Journal of the American Chemical Society, 2017, 139(49): 17853-17860. |
53 | BETTGE M, LI Y, SANKARAN B, et al. Improving high-capacity Li1.2Ni0.15Mn0.55Co0.1O2-based lithium-ion cells by modifiying the positive electrode with alumina[J]. Journal of Power Sources, 2013, 233: 346-357. |
[1] | Fan YANG, Jiarui HE, Ming LU, Lingxia LU, Miao YU. SOC estimation of lithium-ion batteries based on BP-UKF algorithm [J]. Energy Storage Science and Technology, 2023, 12(2): 552-559. |
[2] | Wenkai ZHU, Xing ZHOU, Yajie LIU, Tao ZHANG, Yuanming SONG. Real time state of charge estimation method of lithium-ion battery based on recursive gated recurrent unit neural network [J]. Energy Storage Science and Technology, 2023, 12(2): 570-578. |
[3] | Zhifu WANG, Wei LUO, Yuan YAN, Song XU, Wenmei HAO, Conglin ZHOU. Fault diagnosis of lithium-ion battery sensors using GAPSO-FNN [J]. Energy Storage Science and Technology, 2023, 12(2): 602-608. |
[4] | Yue PAN, Xuebing HAN, Minggao OUYANG, Huahua REN, Wei LIU, Yuejun YAN. Research on the detection algorithm for internal short circuits in lithium-ion batteries and its application to real operating data [J]. Energy Storage Science and Technology, 2023, 12(1): 198-208. |
[5] | Xiaolong HE, Xiaolong SHI, Ziyang WANG, Luhao HAN, Bin YAO. Experimental study on thermal runaway characteristics of vehicle NCM lithium-ion batteries under overcharge, overheating, and their combined effects [J]. Energy Storage Science and Technology, 2023, 12(1): 218-226. |
[6] | Linwang DENG, Tianyu FENG, Shiwei SHU, Bin GUO, Zifeng ZHANG. Nondestructive lithium plating online detection for lithium-ion batteries: A review [J]. Energy Storage Science and Technology, 2023, 12(1): 263-277. |
[7] | Linwang DENG, Tianyu FENG, Shiwei SHU, Zifeng ZHANG, Bin GUO. Review of a fast-charging strategy and technology for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2879-2890. |
[8] | Zhizhan LI, Jinlei QIN, Jianing LIANG, Zhengrong LI, Rui WANG, Deli WANG. High-nickel ternary layered cathode materials for lithium-ion batteries: Research progress, challenges and improvement strategies [J]. Energy Storage Science and Technology, 2022, 11(9): 2900-2920. |
[9] | Xiaoyu CHEN, Mengmeng GENG, Qiankun WANG, Jiani SHEN, Yijun HE, Zifeng MA. Electrochemical impedance feature selection and gaussian process regression based on the state-of-health estimation method for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2995-3002. |
[10] | Tao SUN, Tengteng SHEN, Xin LIU, Dongsheng REN, Jinhai LIU, Yuejiu ZHENG, Luyan WANG, Languang LU, Minggao OUYANG. Application of titration gas chromatography technology in the quantitative detection of lithium plating in Li-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(8): 2564-2573. |
[11] | Yang WANG, Xu LU, Yuxin ZHANG, Long LIU. Thermal runaway exhaust strategy of power battery [J]. Energy Storage Science and Technology, 2022, 11(8): 2480-2487. |
[12] | Qingsong ZHANG, Yang ZHAO, Tiantian LIU. Effects of state of charge and battery layout on thermal runaway propagation in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(8): 2519-2525. |
[13] | Yong MA, Xiaohan LI, Lei SUN, Dongliang GUO, Jinggang YANG, Jianjun LIU, Peng XIAO, Guangjun QIAN. Parameter design of lithium-ion batteries based on a three-dimensional electrochemical thermal coupling lithium precipitation model [J]. Energy Storage Science and Technology, 2022, 11(8): 2600-2611. |
[14] | Liang TANG, Xiaobo YIN, Houfu WU, Pengjie LIU, Qingsong WANG. Demand for safety standards in the development of the electrochemical energy storage industry [J]. Energy Storage Science and Technology, 2022, 11(8): 2645-2652. |
[15] | Liping HUO, Weiling LUAN, Zixian ZHUANG. Development trend of lithium-ion battery safety technology for energy storage [J]. Energy Storage Science and Technology, 2022, 11(8): 2671-2680. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||