Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (3): 835-845.doi: 10.19799/j.cnki.2095-4239.2022.0634
• Energy Storage System and Engineering • Previous Articles Next Articles
Tingting QIN1,2(), Xuezhi ZHOU1,2,3, Dingzhang GUO1,2, Yong SHENG1, Yujie XU1,2, Zhitao ZUO1,2,3, Hui LI1,2,3, Haisheng CHEN1,2,3()
Received:
2022-10-31
Revised:
2022-11-14
Online:
2023-03-05
Published:
2023-04-14
Contact:
Haisheng CHEN
E-mail:qintingting@iet.cn;chen_hs@iet.cn
CLC Number:
Tingting QIN, Xuezhi ZHOU, Dingzhang GUO, Yong SHENG, Yujie XU, Zhitao ZUO, Hui LI, Haisheng CHEN. Study on factors influencing rail gravity energy storage system efficiency[J]. Energy Storage Science and Technology, 2023, 12(3): 835-845.
Table 1
Basic parameters of rail gravity energy storage system"
部件 | 参数 | 数值 | 部件 | 参数 | 数值 |
---|---|---|---|---|---|
载重车辆 | 满载质量/t | 160 | 永磁同步电机 | 直交电感/mH | 0.3e-3 |
上坡速度/(km/h) | 20 | 交轴电感/mH | 0.3e-3 | ||
下坡速度/(km/h) | 20 | 转动惯量/(kg·m2) | 35000 | ||
轮轨滚动摩擦系数 | 0.006 | 额定转矩/(N·m) | 173586 | ||
静摩擦系数 | 0.408 | 额定转速/(rad/s) | 5.82 | ||
车轮直径/m | 1.05 | 定子电阻/Ω | 0.006 | ||
主减速器变比 | 0.55 | 转子磁链/Wb | 1.48 | ||
迎风面积/m2 | 3 | 电机效率 | 0.96 | ||
传动效率 | 0.96 | 双向PWM型变换器 | 变流器效率 | 0.97 | |
山体斜坡 | 高度/m | 200 | 额定容量/MVA | 1.5 | |
坡度/(°) | 7 | 直流侧电压/V | 1150 |
1 | 中共中央国务院关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见[N]. 人民日报, 2021-10-25(1). |
2 | DING J, XU Y J, WANG Z Y, et al. Estimating the economics of electrical energy storage based on different policies in China[J]. Journal of Thermal Science, 2020, 29(2): 352-364. |
3 | TONG W X, LU Z G, CHEN W J, et al. Solid gravity energy storage: A review[J]. Journal of Energy Storage, 2022, 53: doi: 10.1016/j.est.2022.105226. |
4 | BERRADA A, LOUDIYI K, ZORKANI I. Dynamic modeling and design considerations for gravity energy storage[J]. Journal of Cleaner Production, 2017, 159: 336-345. |
5 | MORSTYN T, CHILCOTT M, MCCULLOCH M D. Gravity energy storage with suspended weights for abandoned mine shafts[J]. Applied Energy, 2019, 239: 201-206. |
6 | HAIDER S, SHAHMORADI-MOGHADAM H, SCHÖNBERGER J O, et al. Algorithm and optimization model for energy storage using vertically stacked blocks[J]. IEEE Access, 2020, 8: doi: 10.1109/ACCESS.2020.3041944. |
7 | DAVID HUNT J, ZAKERI B, FALCHETTA G, et al. Mountain Gravity Energy Storage: A new solution for closing the gap between existing short- and long-term storage technologies[J]. Energy, 2020, 190: doi: 10.1016/j.energy.2019.116419. |
8 | ARES, Advanced Rail Energy Storage, 2022. (2022-11-19)[2022-11-26] http://s3.amazonaws.com/siteninja/multitenant/assets/21125/files/original/ All_ About _ARES_-_070616.pdf. |
9 | Advanced Rail Energy Storage (ARES) [EB/OL]. (2022-09-29)[2022-10-11]https:// aresnorthamerica.com/. |
10 | 曾蓉. 山体储能技术及其与风电场联合出力的容量配置研究[D]. 长沙: 长沙理工大学, 2016. |
ZENG R. Research on mountain energy technology and its capacity configuration with wind farm[D]. Changsha: Changsha University of Science & Technology, 2016. | |
11 | 刘志刚, 伍也凡, 肖振锋, 等. 基于重力储能的风光储系统多目标容量优化规划[J]. 全球能源互联网, 2021, 4(5): 464-475. |
LIU Z G, WU Y F, XIAO Z F, et al. Multi-objective optimal capacity planning of the wind-photovoltaic-storage system based on gravity energy storage[J]. Journal of Global Energy Interconnection, 2021, 4(5): 464-475. | |
12 | 侯慧, 徐焘, 肖振锋, 等. 基于重力储能的风光储联合发电系统容量规划与评价[J]. 电力系统保护与控制, 2021, 49(17): 74-84. |
HOU H, XU T, XIAO Z F, et al. Optimal capacity planning and evaluation of a wind-photovoltaic-storage hybrid power system based on gravity energy storage[J]. Power System Protection and Control, 2021, 49(17): 74-84. | |
13 | HOU H, XU T, WU X X, et al. Optimal capacity configuration of the wind-photovoltaic-storage hybrid power system based on gravity energy storage system[J]. Applied Energy, 2020, 271: doi: 10.1016/j.apenergy.2020.115052. |
14 | CHEN Y, HOU H, XU T, et al. A new gravity energy storage operation mode to accommodate renewable energy[C]//2019 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). December 1-4, 2019, Macao, China. IEEE, 2020: 1-5. |
15 | Moazzami M, Moradi J, Shahinzadeh H, et al. Optimal economic operation of microgrids integrating wind farms and advanced rail energy storage system[J]. International Journal of Renewable Energy Research, 2018, 8(2):1155-1164. |
16 | PEITZKE W R, BROWN M B, ERDMAN W L, et al. Utility scale electric energy storage system: US8952563[P]. 2015-02-10. |
17 | 肖立业, 史黎明, 韦统振, 等. 铁路轨道运载车辆储能系统: CN108437808A[P]. 2018-08-24. |
XIAO L Y, SHI L M, WEI T Z, et al. Railway track carrier vehicle energy storage system: CN108437808A[P]. 2018-08-24. | |
18 | 罗振军, 黄田, 梅江平, 等. 依托山体的重力储能系统: CN103867408A[P]. 2014-06-18. |
LUO Z J, HUANG T, MEI J P, et al. Gravity energy storing system relying on massif: CN103867408A[P]. 2014-06-18. | |
19 | PEITZKE W R, BROWN M B. Ridgeline cable drive electric energy storage system: US20170288457[P]. 2017-10-05. |
20 | 柴源. 基于改进鲸鱼算法的风-光-重力储能系统优化配置研究[D]. 西安: 西安理工大学, 2021. |
CHAI Y. Study on optimal configuration of wind power-photovoltaic-gravity energy storage system based on improved whale algorithm[D]. Xi'an: Xi'an University of Technology, 2021. | |
21 | BOTTENFIELD G, HATIPOGLU K, PANTA Y. Advanced rail energy and storage: Analysis of potential implementations for the state of west Virginia[C]//2018 North American Power Symposium (NAPS). September 9-11, 2018, Fargo, ND, USA. IEEE, 2019: 1-4. |
22 | TOUNSI S. Model of wind energy system with reduced simulation time validated by classical equivalent model developed under Simulink[J]. Wind Engineering, 2022, 46(4): 1011-1033. |
23 | WADA N, MATSUI Y. Driving force control for a vehicle considering slip ratio limitation[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2019, 14(2): 297-302. |
24 | 宋舒, 龚建国, 林薇, 等. 纯电动汽车用永磁同步电机空间矢量控制系统建模与仿真[J]. 武汉理工大学学报, 2012, 34(4): 118-122, 140. |
SONG S, GONG J G, LIN W, et al. Modeling and simulation of space vector control system for pure electric vehicle driven by permanent magnet synchronous motor[J]. Journal of Wuhan University of Technology, 2012, 34(4): 118-122, 140. | |
25 | BOSSOUFI B, IONITA S, CONSTANTINESCU L, et al. Managing voltage drops: A variable speed wind turbine connected to the grid[J]. International Journal of Automation and Control, 2017, 11(1): doi: 10.1504/ijaac.2017.080817. |
26 | FU Q. A DSP-controlled permanent magnet synchronous motor control system for hybrid vehicles[J]. International Journal of Antennas and Propagation, 2022, 2022: 1-9. |
27 | SETIAWAN I, PRIYADI A, MIYAUCHI H, et al. Adaptive B-spline neural network-based vector control for a grid side converter in wind turbine-DFIG systems[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2015, 10(6): 674-682. |
[1] | Hong LI, Qiang ZHANG. A review of energy storage science and technology projects supported by national key R&D program [J]. Energy Storage Science and Technology, 2022, 11(9): 2691-2701. |
[2] | Su WANG, Liye XIAO, Wenbing TANG, Jingye ZHANG, Qingquan QIU, Wenyong GUO, Dong ZHANG. Review of new gravity energy storage [J]. Energy Storage Science and Technology, 2022, 11(5): 1575-1582. |
[3] | Zhiwei ZHAO, Zhi YANG, Zhangquan PENG. Application of time-of-flight secondary ion mass spectrometry in lithium-based rechargeable batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 781-794. |
[4] | Yongming ZHAO, Qingquan QIU, Zipan NIE, Xiaoyue LUO, Liye XIAO. Design and operating characteristics of a grid-connected motor-converting system for gravity/flywheel integrated energy storage [J]. Energy Storage Science and Technology, 2022, 11(12): 3895-3905. |
[5] | Yun TANG, Fang YUE, Kaimo GUO, Lanchun LI, Wei CHEN. International development trend analysis of next-generation electrochemical energy storage technology [J]. Energy Storage Science and Technology, 2022, 11(1): 89-97. |
[6] | Ziyan ZHANG, Junyan ZHANG. International competition of key energy storage technologies based on high-quality patents [J]. Energy Storage Science and Technology, 2022, 11(1): 321-334. |
[7] | Liangbo QIAO, Xiaohu ZHANG, Xianzhong SUN, Xiong ZHANG, Yanwei MA. Advances in battery-supercapacitor hybrid energy storage system [J]. Energy Storage Science and Technology, 2022, 11(1): 98-106. |
[8] | Zhonghao RAO, Chenzhen LIU, Yutao HUO, Jiateng ZHAO, Changhui LIU. Practice and exploration of teaching for interdisciplinary outstanding and innovative talents training oriented to energy storage technology [J]. Energy Storage Science and Technology, 2021, 10(3): 1206-1212. |
[9] | LING Haoshu, HE Jingdong, XU Yujie, WANG Liang, CHEN Haisheng. Status and prospect of thermal energy storage technology for clean heating [J]. Energy Storage Science and Technology, 2020, 9(3): 861-868. |
[10] | LIU Qinghua, ZHANG Sai, JIANG Mingzhe, WANG Qiushi, XING Xueqi, YANG Hong, HUANG Feng, LEMMON P John, MIAO Ping. Study on the low-cost flow battery technologies for energy storage [J]. Energy Storage Science and Technology, 2019, 8(S1): 60-64. |
[11] | XIA Xinmao, GUAN Honghao, DING Pengfei, MENG Gaojun. Capacity allocation and optimization strategy of an energy storage system based on an improved quantum genetic algorithm [J]. Energy Storage Science and Technology, 2019, 8(3): 551-558. |
[12] | WANG Jianglin, XU Xueliang, DING Qingqing, ZHU Junping, MA Yongquan, ZHAO Lei, LIU Xiaowei. Application and prospect of zinc nickel battery in energy storage technology [J]. Energy Storage Science and Technology, 2019, 8(3): 506-511. |
[13] | CHEN Rubo. Some thoughts on energy storage system and sponge city [J]. Energy Storage Science and Technology, 2017, 6(S1): 52-. |
[14] | REN Yang1, XIE Yingying1,2, CHEN Zonghai1, MA Zifeng2. Applications of synchrotron X-rays and neutrons diffraction in energy storage materials research [J]. Energy Storage Science and Technology, 2017, 6(5): 855-863. |
[15] | ZHANG Tao1,2, GU Jie1,2, ZHANG Yu3, FANG Chen3. A method of quantifying coupling degree of energy storage technology and standard#br# [J]. Energy Storage Science and Technology, 2017, 6(2): 280-286. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||