Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (12): 4310-4318.doi: 10.19799/j.cnki.2095-4239.2024.0931
• Special Issue on Thermochemical Energy Storage • Previous Articles Next Articles
Hedan TANG(), Han YE, Youjin ZHANG, Rui SHEN, Wenzhong LU, Jian CHEN(
), Youshi LI, Mingdi LI(
)
Received:
2024-10-08
Revised:
2024-10-20
Online:
2024-12-28
Published:
2024-12-23
Contact:
Jian CHEN, Mingdi LI
E-mail:14752226811@163.com;202100119@cslg.edu.cn;lmd-fj@163.com
CLC Number:
Hedan TANG, Han YE, Youjin ZHANG, Rui SHEN, Wenzhong LU, Jian CHEN, Youshi LI, Mingdi LI. Investigation on synthesis of Y2O3/ZrO2 co-stabilized Cu/Ca composites and their thermochemical energy storage properties[J]. Energy Storage Science and Technology, 2024, 13(12): 4310-4318.
1 | 王嘉, 富志生, 杨新龙. "双碳"目标下发展新能源风电光伏用钢的思考[J/OL]. 金属世界, 1-6 [2024-11-06]. DOI: 10.3969/j.issn.1000-6826.2023.05.0602. |
WANG J, FU Z S, YANG X L. Thoughts on the development of new energy wind power and photovoltaic steel under the carbon peaking and carbon neutrality goals[J/OL]. Metal World, 1-6 [2024-11-06]. DOI: 10.3969/j.issn.1000-6826.2023.05.0602. | |
2 | 王艺强, 刘录强, 张志成, 等. 化学储氢介质实现"西氢东送"的可行性研究[J]. 储能科学与技术, 2024, 13(3): 1050-1058. DOI: 10.19799/j.cnki.2095-4239.2023.0486. |
WANG Y Q, LIU L Q, ZHANG Z C, et al. Feasibility of "West-to-East Hydrogen Transmission" through chemical hydrogen storage media[J]. Energy Storage Science and Technology, 2024, 13(3): 1050-1058. DOI: 10.19799/j.cnki.2095- 4239. 2023. 0486. | |
3 | 邢承治, 赵明, 尚超, 等. 有机液体载氢储运技术研究进展及应用场景[J]. 储能科学与技术, 2024, 13(2): 643-651. DOI: 10.19799/j.cnki.2095-4239.2023.0523. |
XING C Z, ZHAO M, SHANG C, et al. Research progress and application scenarios of storage and transportation technology with liquid organic hydrogen carrier[J]. Energy Storage Science and Technology, 2024, 13(2): 643-651. DOI: 10.19799/j.cnki.2095-4239.2023.0523. | |
4 | 万燕鸣, 熊亚林, 王雪颖. 全球主要国家氢能发展战略分析[J]. 储能科学与技术, 2022, 11(10): 3401-3410. DOI: 10.19799/j.cnki.2095-4239.2022.0132. |
WAN Y M, XIONG Y L, WANG X Y. Strategic analysis of hydrogen energy development in major countries[J]. Energy Storage Science and Technology, 2022, 11(10): 3401-3410. DOI: 10.19799/j.cnki.2095-4239.2022.0132. | |
5 | 刘玮, 万燕鸣, 熊亚林, 等. "双碳"目标下我国低碳清洁氢能进展与展望[J]. 储能科学与技术, 2022, 11(2): 635-642. DOI: 10.19799/j.cnki.2095-4239.2021.0385. |
LIU W, WAN Y M, XIONG Y L, et al. Outlook of low carbon and clean hydrogen in China under the goal of "carbon peak and neutrality"[J]. Energy Storage Science and Technology, 2022, 11(2): 635-642. DOI: 10.19799/j.cnki.2095-4239.2021.0385. | |
6 | 谢欣烁, 杨卫娟, 施伟, 等. 制氢技术的生命周期评价研究进展[J]. 化工进展, 2018, 37(6): 2147-2158. DOI: 10.16085/j.issn.1000-6613.2017-1604. |
XIE X S, YANG W J, SHI W, et al. Life cycle assessment of technologies for hydrogen production — A review[J]. Chemical Industry and Engineering Progress, 2018, 37(6): 2147-2158. DOI: 10.16085/j.issn.1000-6613.2017-1604. | |
7 | 李璐伶, 樊栓狮, 陈秋雄, 等. 储氢技术研究现状及展望[J]. 储能科学与技术, 2018, 7(4): 586-594. DOI: 10.12028/j.issn.2095-4239.2018.0062. |
LI L L, FAN S S, CHEN Q X, et al. Hydrogen storage technology: Current status and prospects[J]. Energy Storage Science and Technology, 2018, 7(4): 586-594. DOI: 10.12028/j.issn.2095-4239.2018.0062. | |
8 | ZHENG J Y, LIU X X, XU P, et al. Development of high pressure gaseous hydrogen storage technologies[J]. International Journal of Hydrogen Energy, 2012, 37(1): 1048-1057. DOI: 10.1016/j.ijhydene.2011.02.125. |
9 | 孙峰, 彭浩, 凌祥. 中高温热化学反应储能研究进展[J]. 储能科学与技术, 2015, 4(6): 577-584. |
SUN F, PENG H, LING X. Progress in medium to high temperature thermochemical energy storage technologies[J]. Energy Storage Science and Technology, 2015, 4(6): 577-584. | |
10 | 陈健, 李友势, 陆新元, 等. CeO2负载钙铜复合纳米小球的合成及其热化学储能特性[J]. 华南师范大学学报(自然科学版), 2024, 56(2): 55-61. |
CHEN J, LI Y S, LU X Y, et al. Investigation on synthesis of CeO2-stabilized CaO/CuO composite nanospheres and their thermochemical energy storage characteristics[J]. Journal of South China Normal University (Natural Science Edition), 2024, 56(2): 55-61. | |
11 | 陈健, 李铭迪, 胡焰彬, 等. 基于钙基吸收剂/载氧体的可再生能源存储利用方法及系统: CN114307585A[P]. 2022-04-12. |
12 | MANOVIC V, WU Y H, HE I, et al. Core-in-shell CaO/CuO-based composite for CO2 capture[J]. Industrial & Engineering Chemistry Research, 2011, 50(22): 12384-12391. DOI: 10.1021/ie201427g. |
13 | 陈健, 李友势, 黄昌强, 等. 钙铜复合吸收剂的一步法合成及其CO2捕集性能[J]. 华南师范大学学报(自然科学版), 2023, 55(5): 1-7. DOI: 10.6054/j.jscnun.2023057. |
CHEN J, LI Y S, HUANG C Q, et al. Investigation on one-step synthesis of CaO/CuO composite pellets and their CO2 capture performance[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(5): 1-7. DOI: 10.6054/j.jscnun.2023057. | |
14 | 陈健, 孙世超, 李铭迪, 等. 钙铜复合吸收剂CO2捕集性能优化研究进展[J]. 华南师范大学学报(自然科学版), 2022, 54(3): 43-52. DOI: 10.6054/j.jscnun.2022043. |
CHEN J, SUN S C, LI M D, et al. The progress in the research on optimizing CO2 capture performance of CaO/CuO composites[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(3): 43-52. DOI: 10.6054/j.jscnun.2022043. | |
15 | CHEN J, DUAN L B, DONAT F, et al. Self-activated, nanostructured composite for improved CaL-CLC technology[J]. Chemical Engineering Journal, 2018, 351: 1038-1046. DOI: 10.1016/j.cej.2018.06.176. |
16 | DONG J, TANG Y J, NZIHOU A, et al. Effect of steam addition during carbonation, calcination or hydration on re-activation of CaO sorbent for CO2 capture[J]. Journal of CO2 Utilization, 2020, 39: 101167. DOI: 10.1016/j.jcou.2020.101167. |
17 | QIN C L, YIN J J, LUO C, et al. Enhancing the performance of CaO/CuO based composite for CO2 capture in a combined Ca-Cu chemical looping process[J]. Chemical Engineering Journal, 2013, 228: 75-86. DOI: 10.1016/j.cej.2013.04.115. |
18 | KIERZKOWSKA A M, PACCIANI R, MÜLLER C R. CaO-based CO2 sorbents: From fundamentals to the development of new, highly effective materials[J]. ChemSusChem, 2013, 6(7): 1130-1148. DOI: 10.1002/cssc.201300178. |
19 | RECIO A, LIEW S, LU D, et al. The effects of thermal treatment and steam addition on integrated CuO/CaO chemical looping combustion for CO2 capture[J]. Technologies, 2016, 4(2): 11. DOI: 10.3390/technologies4020011. |
20 | CHEN J, DUAN L B, MA Y X, et al. Recent progress in calcium looping integrated with chemical looping combustion (CaL-CLC) using bifunctional CaO/CuO composites for CO2 capture: A state-of-the-art review[J]. Fuel, 2023, 334: 126630. DOI: 10.1016/j.fuel. 2022.126630. |
21 | QIN C L, YIN J J, LIU W Q, et al. Behavior of CaO/CuO based composite in a combined calcium and copper chemical looping process[J]. Industrial & Engineering Chemistry Research, 2012, 51(38): 12274-12281. DOI: 10.1021/ie300677s. |
22 | KIERZKOWSKA A M, MÜLLER C R. Sol-gel-derived, calcium-based, copper-functionalised CO2 sorbents for an integrated chemical looping combustion-calcium looping CO2 capture process[J]. ChemPlusChem, 2013, 78(1): 92-100. DOI: 10.1002/cplu.201200232. |
23 | CHEN J, HUANG A Q, HUANG C Q, et al. Stabilizer-coated combined Ca/Cu pellets with controllable particle sizes for the Ca/Cu chemical loop[J]. Separation and Purification Technology, 2024, 338: 126535. DOI: 10.1016/j.seppur.2024.126535. |
24 | XING S, HAN R, WANG Y, et al. Facile fabrication of aluminum-oxide deposited CuO/CaO composites with enhanced stability and CO2 capture capacity for combined Ca/Cu looping process[J]. Microporous and Mesoporous Materials, 2022, 337: 111923. DOI: 10.1016/j.micromeso.2022.111923. |
25 | MA J C, MEI D F, PENG W W, et al. On the high performance of a core-shell structured CaO-CuO/MgO@Al2O3 material in calcium looping integrated with chemical looping combustion (CaL-CLC)[J]. Chemical Engineering Journal, 2019, 368: 504-512. DOI: 10.1016/j.cej. 2019.02.188. |
[1] | Yuhang YUAN, Yuchen GAO, Jundong ZHANG, Yanbin GAO, Chaolong WANG, Xiang CHEN, Qiang ZHANG. The application of large language models in energy storage research [J]. Energy Storage Science and Technology, 2024, 13(9): 2907-2919. |
[2] | Dameng LIU, Xuepeng MOU, Bohao SHI, Julong CHEN, Bin WANG, Chen LUO, Chengjun ZHONG, Sizhe CHEN. Multi-software collaborative modeling method for mechanical and electrical co-simulation of slope gravity energy storage systems [J]. Energy Storage Science and Technology, 2024, 13(9): 3266-3276. |
[3] | Jiahui HUANG, Zhufang KUANG. The forefront of the integration of artificial intelligence and energy storage technologies [J]. Energy Storage Science and Technology, 2024, 13(9): 3161-3181. |
[4] | Jing XU, Yuqi WANG, Xiao FU, Qifan YANG, Jingchen LIAN, Liqi WANG, Ruijuan XIAO. Discovery of new battery materials based on a big data approach [J]. Energy Storage Science and Technology, 2024, 13(9): 2920-2932. |
[5] | Bin DENG, Haiming HUA, Yuzhi ZHANG, Xiaoxu WANG, Linfeng ZHANG. Deep potential model: Applications and insights for electrochemical energy storage materials [J]. Energy Storage Science and Technology, 2024, 13(9): 2884-2906. |
[6] | Zhanwei LI, Dongfang FAN, Chao ZENG, Wenqian HE, Jin HE. Research on capacity optimization configuration and operation strategy of energy storage system considering wind and solar consumption [J]. Energy Storage Science and Technology, 2024, 13(8): 2713-2725. |
[7] | Yuguang LI, Xiang LIU, Yanzhao LIANG, Shuangzhen LIU. Research on the application of flywheel energy storage device in rail transit [J]. Energy Storage Science and Technology, 2024, 13(8): 2679-2686. |
[8] | Qianqian ZHOU, Yong HUANG, Ke CUI, Danan SUN. Research and test verification on simulation technology of motor temperature field of flywheel energy storage device [J]. Energy Storage Science and Technology, 2024, 13(8): 2589-2596. |
[9] | Qun GE, Tao LIANG, Bin HOU, Wanhong WANG, Long ZHANG, Liangyu WU, Chengbin ZHANG, Xiangdong LIU. Performance enhancement of thermal energy storage units for plant factories [J]. Energy Storage Science and Technology, 2024, 13(8): 2687-2695. |
[10] | Ye CHEN, Jin LI, Houfu WU, Shaoyu ZHANG, Yuxi CHU, Ping ZHUO. Analysis of thermal runaway propagation and explosion risk of a large battery module for energy storage [J]. Energy Storage Science and Technology, 2024, 13(8): 2803-2812. |
[11] | Changfa LIU, Liheng FU, Zengli ZHANG, Hongsheng LI, Jingbin GU. Adaptive coordinated control method for distributed energy storage capacity with high proportion of photovoltaic access [J]. Energy Storage Science and Technology, 2024, 13(8): 2696-2703. |
[12] | Pengyu LI, Xipeng LIN, Liang WANG, Haisheng CHEN, Yifei WANG. Study on supercritical nitrogen flow and heat transfer characteristics in a vertical corrugated channel [J]. Energy Storage Science and Technology, 2024, 13(8): 2605-2614. |
[13] | Zheng LI, Julong CHEN, Wenlin LI, Yu ZHANG, Jierui YANG, Sizhe CHEN. Optimized operation of hybrid energy storage to enhance the performance of AGC with sloped gravity storage [J]. Energy Storage Science and Technology, 2024, 13(8): 2761-2771. |
[14] | Yongqi LI, Yun DU, Zhenhua FANG, Songtong ZHANG, Xiayu ZHU, Hailiang HU, Jingyi QIU, Hai MING. Review of the operation and fault handling analysis of new energy microgrid systems in military applications [J]. Energy Storage Science and Technology, 2024, 13(8): 2740-2757. |
[15] | Wentao ZHU, Yang ZHOU, Yimin XU, Tao SHI. Application and optimization of battery energy storage technology in new energy generation system [J]. Energy Storage Science and Technology, 2024, 13(8): 2737-2739. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||