Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (11): 4162-4169.doi: 10.19799/j.cnki.2095-4239.2025.0492
• Energy Storage Materials and Devices • Previous Articles Next Articles
Hongyue YUAN1,2(
), Jing JIANG2, Heqing TIAN2(
)
Received:2025-05-26
Revised:2025-06-11
Online:2025-11-28
Published:2025-11-24
Contact:
Heqing TIAN
E-mail:81084902@qq.com;tianhq@zzu.edu.cn
CLC Number:
Hongyue YUAN, Jing JIANG, Heqing TIAN. Molecular dynamics simulation of Al2O3/LiCl-NaCl-KCl molten salt nanofluid for thermal energy storage[J]. Energy Storage Science and Technology, 2025, 14(11): 4162-4169.
Table 1
BMH parameters for LiCl-NaCl-KCl and Al2O3"
| Pair | Aij /(kcal/mol) | ρij /nm | σij /nm | Cij /[(nm6·kcal)/mol] | Dij /[(nm8·kcal)/mol] |
|---|---|---|---|---|---|
| Li-Li | 9.7266 | 0.03425 | 0.1632 | 1.0504×10-6 | 0.4317×10-8 |
| Na-Na | 6.0761 | 0.03170 | 0.2340 | 2.41691×10-5 | 1.15191×10-7 |
| K-K | 6.0782 | 0.03367 | 0.29260 | 3.496390×10-4 | 3.453225×10-6 |
| Li-K | 7.6890 | 0.03396 | 0.2279 | 1.91641×10-5 | 1.22097×10-7 |
| Li-Na | 7.6895 | 0.03293 | 0.39720 | 5.0386×10-6 | 2.2291×10-8 |
| Na-K | 6.0761 | 0.03266 | 0.26330 | 9.19264×10-5 | 6.30425×10-7 |
| Li-Al | 0.8060 | 0.01135 | 0.32024 | 1.84352×10-5 | 0 |
| Na-Al | 3.0729 | 0.01930 | 0.19552 | 8.84300×10-5 | 0 |
| K-Al | 0.6371 | 0.01131 | 0.44964 | 3.363406×10-4 | 0 |
| Li-Cl | 6.6870 | 0.03425 | 0.2401 | 2.87769×10-5 | 3.45326×10-7 |
| Na-Cl | 4.8626 | 0.03170 | 0.2755 | 1.611274×10-4 | 1.999732×10-6 |
| K-Cl | 4.8626 | 0.03367 | 0.3048 | 6.906450×10-4 | 1.0503560×10-5 |
| Al-Cl | 1.8569 | 0.01930 | 0.23702 | 7.348200×10-4 | 0 |
| Cl-Cl | 3.6473 | 0.03402 | 0.3170 | 1.6757854×10-3 | 3.3659592×10-5 |
| Cl-O | 1.9617 | 0.02900 | 0.34065 | 1.8083×10-3 | 0 |
| Al-Al | 0.0668 | 0.0068 | 0.15704 | 3.23548×10-4 | 0 |
| Al-O | 0.1727 | 0.0164 | 0.26067 | 7.96210×10-4 | 0 |
| O-O | 0.2763 | 0.0263 | 0.36430 | 1.959372×10-3 | 0 |
| [1] | SHEN Z H, QIN M L, XIONG F, et al. Nanocellulose-based composite phase change materials for thermal energy storage: Status and challenges[J]. Energy & Environmental Science, 2023, 16(3): 830-861. DOI: 10.1039/D2EE04063H. |
| [2] | LI Z R, HU N, FAN L W. Nanocomposite phase change materials for high-performance thermal energy storage: A critical review[J]. Energy Storage Materials, 2023, 55: 727-753. DOI: 10.1016/j.ensm.2022.12.037. |
| [3] | JAYATHUNGA D S, KARUNATHILAKE H P, NARAYANA M, et al. Phase change material (PCM) candidates for latent heat thermal energy storage (LHTES) in concentrated solar power (CSP) based thermal applications—A review[J]. Renewable and Sustainable Energy Reviews, 2024, 189: 113904. DOI: 10.1016/j.rser.2023.113904. |
| [4] | KENISARIN M M. High-temperature phase change materials for thermal energy storage[J]. Renewable and Sustainable Energy Reviews, 2010, 14(3): 955-970. DOI: 10.1016/j.rser.2009.11.011. |
| [5] | DING W J, BAUER T. Progress in research and development of molten chloride salt technology for next generation concentrated solar power plants[J]. Engineering, 2021, 7(3): 334-347. DOI: 10.1016/j.eng.2020.06.027. |
| [6] | TIAN H Q, ZHANG W G, KOU Z Y. Molecular dynamics simulations on the structure and thermal property of SiO2/(LiCl-KCl) nanofluids for high temperature thermal energy storage[J]. Ceramics International, 2025, 51(4): 5125-5134. DOI: 10.1016/j.ceramint.2024.11.486. |
| [7] | AHMAD ALJAERANI H, SAMYKANO M, SAIDUR R, et al. Nanoparticles as molten salts thermophysical properties enhancer for concentrated solar power: A critical review[J]. Journal of Energy Storage, 2021, 44: 103280. DOI: 10.1016/j.est.2021.103280. |
| [8] | ABDELRAZIK A S, SAYED M A M, OMAR A M A, et al. Potential of molecular dynamics in the simulation of nanofluids properties and stability[J]. Journal of Molecular Liquids, 2023, 381: 121757. DOI: 10.1016/j.molliq.2023.121757. |
| [9] | 田禾青, 周俊杰, 郭茶秀. 熔盐储热材料比热容强化的研究进展[J]. 化工进展, 2020, 39(2): 584-595. DOI: 10.16085/j.issn.1000-6613.2019-0798. |
| TIAN H Q, ZHOU J J, GUO C X. Progress of specific heat enhancement of molten salt thermal energy storage materials[J]. Chemical Industry and Engineering Progress, 2020, 39(2): 584-595. DOI: 10.16085/j.issn.1000-6613.2019-0798. | |
| [10] | TIAN H Q, DU L C, HUANG C L, et al. Enhanced specific heat capacity of binary chloride salt by dissolving magnesium for high-temperature thermal energy storage and transfer[J]. Journal of Materials Chemistry A, 2017, 5(28): 14811-14818. DOI: 10.1039/C7TA04169A. |
| [11] | SHIN D, BANERJEE D. Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications[J]. International Journal of Heat and Mass Transfer, 2011, 54(5/6): 1064-1070. DOI: 10.1016/j.ijheatmasstransfer.2010.11.017. |
| [12] | HAN D M, GUENE LOUGOU B, XU Y T, et al. Thermal properties characterization of chloride salts/nanoparticles composite phase change material for high-temperature thermal energy storage[J]. Applied Energy, 2020, 264: 114674. DOI: 10.1016/j.apenergy. 2020.114674. |
| [13] | DING J, PAN G, DU L C, et al. Theoretical prediction of the local structures and transport properties of binary alkali chloride salts for concentrating solar power[J]. Nano Energy, 2017, 39: 380-389. DOI: 10.1016/j.nanoen.2017.07.020. |
| [14] | NI H O, WU J, SUN Z, et al. Insight into the viscosity enhancement ability of Ca(NO3)2 on the binary molten nitrate salt: A molecular dynamics simulation study[J]. Chemical Engineering Journal, 2019, 377: 120029. DOI: 10.1016/j.cej.2018.09.190. |
| [15] | CUI L, YU Q S, WEI G S, et al. Mechanisms for thermal conduction in molten salt-based nanofluid[J]. International Journal of Heat and Mass Transfer, 2022, 188: 122648. DOI: 10.1016/j.ijheatmasstransfer.2022.122648. |
| [16] | DING J, DU L C, PAN G, et al. Molecular dynamics simulations of the local structures and thermodynamic properties on molten alkali carbonate K2CO3[J]. Applied Energy, 2018, 220: 536-544. DOI: 10.1016/j.apenergy.2018.03.116. |
| [17] | JO B, BANERJEE D. Effect of solvent on specific heat capacity enhancement of binary molten salt-based carbon nanotube nanomaterials for thermal energy storage[J]. International Journal of Thermal Sciences, 2015, 98: 219-227. DOI: 10.1016/j.ijthermalsci.2015.07.020. |
| [18] | 刘杰庭. 碱金属氯化物熔盐基纳米流体的热物性分子动力学模拟研究[D]. 北京: 华北电力大学, 2022. DOI: 10.27139/d.cnki.ghbdu. 2022.000127. |
| LIU J T. Molecular dynamics simulation of thermophysical properties of alkali metal chloride molten salt-based nanofluids[D]. Beijing: North China Electric Power University, 2022. DOI: 10.27139/d.cnki.ghbdu.2022.000127. | |
| [19] | 田禾青, 寇朝阳, 周俊杰, 等. LiCl-KCl熔盐纳米流体结构和热物性的分子动力学模拟[J]. 储能科学与技术, 2023, 12(3): 654-660. DOI: 10.19799/j.cnki.2095-4239.2022.0683. |
| TIAN H Q, KOU Z Y, ZHOU J J, et al. Molecular dynamics simulation of structure and thermal properties of LiCl-KCl molten salt nanofluids[J]. Energy Storage Science and Technology, 2023, 12(3): 654-660. DOI: 10.19799/j.cnki.2095-4239.2022.0683. | |
| [20] | CACCAMO C, DIXON M. Molten alkali-halide mixtures: A molecular-dynamics study of Li/KCl mixtures[J]. Journal of Physics C: Solid State Physics, 1980, 13(10): 1887. DOI: 10. 1088/0022-3719/13/10/009. |
| [21] | LARSEN B, FØRLAND T, SINGER K. A Monte Carlo calculation of thermodynamic properties for the liquid NaCl+KCl mixture[J]. Molecular Physics, 1973, 26(6): 1521-1532. DOI: 10.1080/0026 8977300102671. |
| [22] | MÜLLER-PLATHE F, BORDAT P. Reverse non-equilibrium molecular dynamics[M]//Novel Methods in Soft Matter Simulations. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004: 310-326. DOI: 10.1007/978-3-540-39895-0_10. |
| [1] | Chao PANG, Shuang DING, Xiaokun ZHANG, Yong XIANG. Simulation study of the solvation structure and ion migration behavior in localized high-concentration electrolytes [J]. Energy Storage Science and Technology, 2025, 14(8): 3207-3215. |
| [2] | Fuxu XING, Qi QIN, Longkang WANG, Yubing LI, Shuaikai XU, Tangming MO. Recent advances in theoretical and computational simulations of pseudocapacitors [J]. Energy Storage Science and Technology, 2025, 14(8): 3004-3018. |
| [3] | Yonghan ZHAO, Gang WANG, Hui YANG. Adsorption characteristics and microstructure characterization of lithium bromide crystals [J]. Energy Storage Science and Technology, 2025, 14(7): 2707-2713. |
| [4] | Yongzhao LI, Tianyi MA, Han YOU, Xiaobo LI, Ronggui YANG. High-temperature stability of solar salt and Hitec under air atmosphere [J]. Energy Storage Science and Technology, 2025, 14(7): 2813-2819. |
| [5] | Bin WANG, Jinkai LIU, Xiaoxia JIANG, Ning BAI, Yuanwei LU. Optimization of flexibile peak shaving system of coal-fired unit aided by molten salt heat storage based on economic analysis [J]. Energy Storage Science and Technology, 2025, 14(7): 2729-2737. |
| [6] | Jinzhu ZHANG, Lingran MENG, Yuting WU, Tianqing SHI, Yongqiang SHANG, Ruiping ZHI, Wenzhen WEI. Phase diagram analysis of binary and ternary salts of lithium, sodium and potassium nitroxides [J]. Energy Storage Science and Technology, 2025, 14(6): 2515-2523. |
| [7] | Xinlong HAN, Yuanwei LU, Yancheng MA, Yuting WU, Cancan ZHANG. Research on the dynamic corrosion characteristics of ternary nitrocarbonate acid mixed molten salt at high decomposition temperatures [J]. Energy Storage Science and Technology, 2025, 14(4): 1386-1393. |
| [8] | Boxu YU, Rui HAN, Qian LIU, Zhirong LIAO, Xing JU, Chao XU. Thermodynamic performance of a flexible retrofit Carnot battery energy storage system in a coupled thermal power plant [J]. Energy Storage Science and Technology, 2025, 14(4): 1461-1470. |
| [9] | Xueru LI, Zhejie MA, Ping LI. Research progress on microstructure characterization of cathode catalyst layer in proton exchange membrane fuel cells [J]. Energy Storage Science and Technology, 2025, 14(2): 812-821. |
| [10] | Guobing ZHOU, Shenzhen XU. Progress of theoretical studies on the formation and growth mechanisms of solid electrolyte interphase at lithium metal anodes [J]. Energy Storage Science and Technology, 2024, 13(9): 3150-3160. |
| [11] | Chenyang ZHAO, Xiaokun YU, Yubing TAO. Preparation and characterization of modified CuO nanoparticles/n-octadecane phase change material [J]. Energy Storage Science and Technology, 2024, 13(6): 1786-1793. |
| [12] | Heqing TIAN, Yiming GAO, Junjie ZHOU. Numerical simulation on the melting process of binary chloride salt nanofluids in a square cavity [J]. Energy Storage Science and Technology, 2024, 13(3): 1030-1035. |
| [13] | Chao YU, Gechuanqi PAN. Molecular dynamics study on structure and thermal properties of high-performance chloride molten salt [J]. Energy Storage Science and Technology, 2024, 13(12): 4368-4380. |
| [14] | Dalin WEI, Lin ZHU, Xiang LING, Feng JIANG. Research progress of MgCl2-NaCl-KCl molten salt for high-temperature heat storage [J]. Energy Storage Science and Technology, 2024, 13(12): 4421-4435. |
| [15] | Heqing TIAN, Zhaoyang KOU, Junjie ZHOU, Yinsheng YU. Molecular dynamics simulation of structure and thermal properties of LiCl-KCl molten salt nanofluids [J]. Energy Storage Science and Technology, 2023, 12(3): 654-660. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||