Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (11): 4170-4183.doi: 10.19799/j.cnki.2095-4239.2025.0454
• Energy Storage Materials and Devices • Previous Articles Next Articles
Quanlong LI(
), Yuanyuan TAO, Mengdi WANG, Shenglong MU, Rongrong ZHANG, Shenglan NI, Zonghao LIU(
)
Received:2025-05-15
Revised:2025-06-11
Online:2025-11-28
Published:2025-11-24
Contact:
Zonghao LIU
E-mail:quanlong.li@rongkepower.com;zonghao.liu@rongkepower.com
CLC Number:
Quanlong LI, Yuanyuan TAO, Mengdi WANG, Shenglong MU, Rongrong ZHANG, Shenglan NI, Zonghao LIU. Technical indicator requirement analysis and industrial development status of key materials for vanadium flow battery[J]. Energy Storage Science and Technology, 2025, 14(11): 4170-4183.
Table 2
Technical indicators of the carbon-plastic bipolar plate"
| 序号 | 测试性能 | 单位 | 指标要求 | |
|---|---|---|---|---|
| 1 | 厚度均匀性 | 平均厚度d≤0.4 mm | — | ≤6%d |
| 平均厚度0.4<d≤1.0 mm | ≤5%d | |||
| 平均厚度d>1.0 mm | ≤4%d | |||
| 2 | 尺寸偏差(长度和宽度方向) | mm | ≤±1 | |
| 3 | 电性能 | 体积电阻率① | Ω·cm | ≤0.15 |
| 表面电阻(垂直于板面方向) | Ω·cm2 | ≤0.10 | ||
| 与碳毡接触电阻(0.5~0.6 MPa) | Ω·cm2 | ≤0.10 | ||
| 4 | 力学性能 | 抗弯强度 | MPa | ≥20 |
| 抗拉强度 | MPa | ≥10 | ||
| 抗压强度 | MPa | ≥20 | ||
| 5 | 耐久性 | 腐蚀电流密度 | μA/cm2 | ≤16 |
| 钒离子扩散系数 | m2/s | ≤5×10-15 | ||
| 气体透过率 | cm3/(cm2·s) | ≤2×10-6 | ||
| 耐腐蚀性(质量变化) | % | ≤±0.5 | ||
| 尺寸变化率 | % | ≤±0.5 | ||
Table 3
Main component content of the electrolyte for vanadium flow battery in sulfuric acid system"
| 产品品类 | 成分 | 允许偏差 | |
|---|---|---|---|
| 3价电解液 | V | ≥1.50 mol/L | ±0.05 mol/L |
| SO42- | ≥2.30 mol/L | ±0.10 mol/L | |
| V3+∶V | ≥0.95 | ||
| 3.5价电解液 | V | ≥1.50 mol/L | ±0.05 mol/L |
| SO42- | ≥2.30 mol/L | ±0.10 mol/L | |
| V3+∶VO2+ | 1.0 | ±0.10 | |
| 4价电解液 | V | ≥1.50 mol/L | ±0.05 mol/L |
| SO42- | ≥2.30 mol/L | ±0.10 mol/L | |
| VO2+∶V | ≥0.95 | ||
| [1] | 袁治章, 刘宗浩, 李先锋. 液流电池储能技术研究进展[J]. 储能科学与技术, 2022, 11(9): 2944-2958. DOI: 10.19799/j.cnki.2095-4239. 2022.0295. |
| YUAN Z Z, LIU Z H, LI X F. Research progress of flow battery technologies[J]. Energy Storage Science and Technology, 2022, 11(9): 2944-2958. DOI: 10.19799/j.cnki.2095-4239.2022.0295. | |
| [2] | HU H Y, HAN M S, LIU J, et al. Development status, challenges, and perspectives of key components and systems of all-vanadium redox flow batteries[J]. Future Batteries, 2024, 4: 100008. DOI: 10.1016/j.fub.2024.100008. |
| [3] | LU W J, LI X F, ZHANG H M. The next generation vanadium flow batteries with high power density—A perspective[J]. Physical Chemistry Chemical Physics, 2018, 20(1): 23-35. DOI: 10.1039/C7CP07456E. |
| [4] | YE J Y, XIA L, LI H Y, et al. The critical analysis of membranes toward sustainable and efficient vanadium redox flow batteries[J]. Advanced Materials, 2024, 36(28): 2402090. DOI: 10.1002/adma. 202402090. |
| [5] | QI H H, PAN L M, SUN J, et al. Detecting and repairing micro defects in perfluorinated ion exchange membranes for redox flow batteries[J]. Journal of Power Sources, 2025, 628: 235930. DOI: 10.1016/j.jpowsour.2024.235930. |
| [6] | 杨正金, 左培培, 李圆圆, 等. 面向燃料电池和液流电池的高性能离子交换膜[J]. 膜科学与技术, 2021, 41(6): 162-171, 181. DOI:10. 16159/j.cnki.issn1007-8924.2021.06.021. |
| YANG Z J,ZUO P P,LI Y Y,et al. Advanced ion exchange membranes for fuel cells and aqueous flow batteries[J]. Membrane Science and Technology, 2021, 41(6): 162-171, 181. DOI:10.16159/j.cnki.issn1007-8924.2021.06.021. | |
| [7] | MAURITZ K A, MOORE R B. State of understanding of nafion[J]. Chemical Reviews, 2004, 104(10): 4535-4585. DOI: 10.1021/cr0207123. |
| [8] | PENG S S, WU X M, YAN X M, et al. Polybenzimidazole membranes with nanophase-separated structure induced by non-ionic hydrophilic side chains for vanadium flow batteries[J]. Journal of Materials Chemistry A, 2018, 6(9): 3895-3905. DOI: 10.1039/C7TA08790J. |
| [9] | LU W J, YUAN Z Z, LI M R, et al. Solvent-induced rearrangement of ion-transport channels: A way to create advanced porous membranes for vanadium flow batteries[J]. Advanced Functional Materials, 2017, 27(4): 1604587. DOI: 10.1002/adfm.201604587. |
| [10] | PAN L M, GUO Z X, LI H C, et al. High-performance porous electrodes for flow batteries: Improvements of specific surface areas and reaction kinetics[J]. ChemElectroChem, 2024, 11(21): e202400460. DOI: 10.1002/celc.202400460. |
| [11] | JIANG H R, SHYY W, WU M C, et al. A bi-porous graphite felt electrode with enhanced surface area and catalytic activity for vanadium redox flow batteries[J]. Applied Energy, 2019, 233: 105-113. DOI: 10.1016/j.apenergy.2018.10.033. |
| [12] | WU L T, WANG J S, SHEN Y, et al. Electrochemical evaluation methods of vanadium flow battery electrodes[J]. Physical Chemistry Chemical Physics, 2017, 19(22): 14708-14717. DOI: 10.1039/C7CP02581E. |
| [13] | WEI C, SUN S N, MANDLER D, et al. Approaches for measuring the surface areas of metal oxide electrocatalysts for determining their intrinsic electrocatalytic activity[J]. Chemical Society Reviews, 2019, 48(9): 2518-2534. DOI: 10.1039/C8CS00848E. |
| [14] | ZHANG K Y, YAN C W, TANG A. Unveiling electrode compression impact on vanadium flow battery from polarization perspective via a symmetric cell configuration[J]. Journal of Power Sources, 2020, 479: 228816. DOI: 10.1016/j.jpowsour. 2020.228816. |
| [15] | 王庆泰, 张赛, 王杰敏. 全钒液流电池多孔电极非均匀压缩的数值模拟[J]. 化工进展, 2024, 43(6): 2940-2949. DOI: 10.16085/j.issn. 1000-6613.2023-0733. |
| WANG Q T, ZHANG S, WANG J M. Numerical simulation for non-uniform compression of porous electrodes in vanadium flow batteries[J]. Chemical Industry and Engineering Progress, 2024, 43(6): 2940-2949. DOI: 10.16085/j.issn.1000-6613.2023-0733. | |
| [16] | 娄景媛, 尤东江, 李雪菁. 全钒氧化还原液流电池用石墨毡电极的分步氧化活化[J]. 电化学, 2020, 26(6): 876-884. DOI: 10.13208/j.electrochem. 190714. |
| LOU J Y, YOU D J, LI X J. Step-by-step modification of graphite felt electrode for vanadium redox flow battery[J]. Journal of Electrochemistry, 2020, 26(6): 876-884. DOI: 10.13208/j.electrochem.190714. | |
| [17] | 王泓, 张开悦. 全钒液流电池碳毡电极的热处理活化研究[J]. 储能科学与技术, 2025, 14(2): 488-496. DOI: 10.19799/j.cnki.2095-4239. 2024.0893. |
| WANG H, ZHANG K Y. Study on thermal treatment activation of carbon felt electrode for all-vanadium flow batteries[J]. Energy Storage Science and Technology, 2025, 14(2): 488-496. DOI: 10.19799/j.cnki.2095-4239.2024.0893. | |
| [18] | 宋建勋. 碳布整体穿刺织物编织工艺与结构参数优化[D]. 南京: 东南大学, 2003. |
| SONG J X. Optimization of weaving process and structural parameters of carbon cloth integral puncture fabric[D]. Nanjing: Southeast University, 2003. | |
| [19] | 戴纹硕, 郭骞远, 陈向南, 等. 全钒液流电池双极板材料研究进展[J]. 储能科学与技术, 2024, 13(4): 1310-1325. DOI: 10.19799/j.cnki. 2095-4239.2023.0882. |
| DAI W S, GUO Q Y, CHEN X N, et al. Research progress of bipolar plate materials for vanadium flow battery[J]. Energy Storage Science and Technology, 2024, 13(4): 1310-1325. DOI: 10.19799/j.cnki.2095-4239.2023.0882. | |
| [20] | 花仕洋, 徐增师, 余罡, 等. 膨胀石墨在燃料电池双极板中的应用综述[J]. 船电技术, 2018, 38(4): 11-16. DOI: 10.13632/j.meee.2018. 04.003. |
| HUA S Y, XU Z S, YU G, et al. Review of expanded graphite in fuel cell bipolar plate[J]. Marine Electric & Electronic Engineering, 2018, 38(4): 11-16. DOI: 10.13632/j.meee.2018.04.003. | |
| [21] | 罗晓宽, 侯明, 傅云峰, 等. 质子交换膜燃料电池模压石墨双极板研究[J]. 电源技术, 2008, 32(3): 174-176. |
| LUO X K, HOU M, FU Y F, et al. Study on mold pressing graphite bipolar plates for proton-exchange membrane fuel cells[J]. Chinese Journal of Power Sources, 2008, 32(3): 174-176. | |
| [22] | 朱兆武, 张旭堃, 苏慧, 等. 全钒液流电池提高电解液浓度的研究与应用现状[J]. 储能科学与技术, 2022, 11(11): 3439-3446. DOI: 10. 19799/j.cnki.2095-4239.2022.0329. |
| ZHU Z W, ZHANG X K, SU H, et al. Research and application of increasing electrolyte concentration in all vanadium redox flow battery[J]. Energy Storage Science and Technology, 2022, 11(11): 3439-3446. DOI: 10.19799/j.cnki.2095-4239.2022.0329. | |
| [23] | SKYLLAS-KAZACOS M, CAO L Y, KAZACOS M, et al. Vanadium electrolyte studies for the vanadium redox battery—A review[J]. ChemSusChem, 2016, 9(13): 1521-1543. DOI: 10.1002/cssc. 201600102. |
| [24] | TIAN W X, DU H, WANG J Z, et al. A review of electrolyte additives in vanadium redox flow batteries[J]. Materials, 2023, 16(13): 4582. DOI: 10.3390/ma16134582. |
| [25] | RODBY K E, JAFFE R L, OLIVETTI E A, et al. Materials availability and supply chain considerations for vanadium in grid-scale redox flow batteries[J]. Journal of Power Sources, 2023, 560: 232605. DOI: 10.1016/j.jpowsour.2022.232605. |
| [26] | 李振鹏, 颜东梅, 李军, 等. 全钒液流电池在储能领域的应用与展望[J]. 电池, 2024, 54(3): 422-426. DOI:10.19535/j.1001-1579.2024.03.027. |
| LI Z P, YAN D M, LI J, et al. Application and prospect of all-vanadium flow battery in energy storage field[J]. Dianchi(Battery Bimonthly), 2024, 54(3): 422-426. DOI:10.19535/j.1001-1579.2024.03.027. | |
| [27] | 张华民. 全钒液流电池的技术进展、不同储能时长系统的价格分析及展望[J]. 储能科学与技术, 2022, 11(9): 2772-2780. DOI: 10. 19799/j.cnki.2095-4239.2022.0246. |
| ZHANG H M. Development, cost analysis considering various durations, and advancement of vanadium flow batteries[J]. Energy Storage Science and Technology, 2022, 11(9): 2772-2780. DOI: 10.19799/j.cnki.2095-4239.2022.0246. | |
| [28] | YAN X M, ZHANG C M, DAI Y, et al. A novel imidazolium-based amphoteric membrane for high-performance vanadium redox flow battery[J]. Journal of Membrane Science, 2017, 544: 98-107. DOI: 10.1016/j.memsci.2017.09.025. |
| [29] | YUAN Z Z, DAI Q, QIAO L, et al. Highly stable aromatic poly (ether sulfone) composite ion exchange membrane for vanadium flow battery[J]. Journal of Membrane Science, 2017, 541: 465-473. DOI: 10.1016/j.memsci.2017.07.036. |
| [30] | 杨大伟, 董燕青, 范镜敏, 等. 全钒液流电池磺化石墨烯/Nafion复合膜的研究[J]. 电化学, 2015, 21(5): 407-410. DOI: 10.13208/j.electrochem. 150724. |
| YANG D W, DONG Y Q, FAN J M, et al. Sulfonated-graphene/Nafion composite membrane for all vanadium redox flow batteries[J]. Journal of Electrochemistry, 2015, 21(5): 407-410. DOI: 10.13208/j.electrochem.150724. | |
| [31] | LUO Q T, ZHANG H M, CHEN J, et al. Preparation and characterization of Nafion/SPEEK layered composite membrane and its application in vanadium redox flow battery[J]. Journal of Membrane Science, 2008, 325(2): 553-558. DOI: 10.1016/j.memsci. 2008.08.025. |
| [32] | 柳东东, 林茂才, 管涛, 等. 全钒氧化还原液流电池Nafion/SiO2复合膜的研究[J]. 电化学, 2010, 16(4): 455-459. DOI: 10.13208/j.electrochem. 2010.04.020. |
| LIU D D, LIN M C, GUAN T, et al. Research on Nafion/SiO2 composite membrane in all vanadium redox flow battery[J]. Electrochemistry, 2010, 16(4): 455-459. DOI: 10.13208/j.electrochem.2010.04.020. | |
| [33] | WEI L, ZENG L, HAN M S, et al. Nano TiC electrocatalysts embedded graphite felt for high rate and stable vanadium redox flow batteries[J]. Journal of Power Sources, 2023, 576: 233180. DOI: 10.1016/j.jpowsour.2023.233180. |
| [34] | WANG L, LI S Y, LI D, et al. 3D flower-like molybdenum disulfide modified graphite felt as a positive material for vanadium redox flow batteries[J]. RSC Advances, 2020, 10(29): 17235-17246. DOI: 10.1039/D0RA02541K. |
| [35] | XING F, FU Q, XING F, et al. Bismuth single atoms regulated graphite felt electrode boosting high power density vanadium flow batteries[J]. Journal of the American Chemical Society, 2024, 146(38): 26024-26033. DOI: 10.1021/jacs.4c04951. |
| [36] | 徐冉, 王宝冬, 王绍亮, 等. 杂原子掺杂电极用于全钒液流电池中的研究进展[J]. 储能科学与技术, 2024, 13(6): 1849-1860. DOI:10.19799/j.cnki.2095-4239.2023.0929. |
| XU R, WANG B D, WANG S L, et al. Research progress on heteroatom-doped electrodes used in all vanadium redox flow batteries[J]. Energy Storage Science and Technology, 2024, 13(6):1849-1860. DOI:10.19799/j.cnki.2095-4239.2023.0929. | |
| [37] | GAO Y, WANG H R, MA Q, et al. Carbon sheet-decorated graphite felt electrode with high catalytic activity for vanadium redox flow batteries[J]. Carbon, 2019, 148: 9-15. DOI: 10.1016/j.carbon.2019.03.035. |
| [38] | 李强, 王俊楠, 孙红. 钒液流电池石墨毡电极的MWCNTs-COOH-NS修饰[J]. 储能科学与技术, 2021, 10(6): 2097-2105. DOI: 10.19799/j.cnki.2095-4239.2021.0183. |
| LI Q, WANG J N, SUN H. Graphite felt electrode modified with MWCNTs-COOH-NS for vanadium flow battery[J]. Energy Storage Science and Technology, 2021, 10(6): 2097-2105. DOI: 10.19799/j.cnki.2095-4239.2021.0183. | |
| [39] | JIANG F J, LIAO W N, AYUKAWA T, et al. Enhanced performance and durability of composite bipolar plate with surface modification of cactus-like carbon nanofibers[J]. Journal of Power Sources, 2021, 482: 228903. DOI: 10.1016/j.jpowsour. 2020.228903. |
| [40] | LIU Z H, WANG B G, YU L X. Preparation and surface modification of PVDF-carbon felt composite bipolar plates for vanadium flow battery[J]. Journal of Energy Chemistry, 2018, 27(5): 1369-1375. DOI: 10.1016/j.jechem.2018.04.010. |
| [41] | 徐若晨, 张江涛, 刘明义, 等. 电化学储能及抽水蓄能全生命周期度电成本分析[J]. 电工电能新技术, 2021, 40(12): 10-18. |
| XU R C, ZHANG J T, LIU M Y, et al. Analysis of life cycle cost of electrochemical energy storage and pumped storage[J]. Advanced Technology of Electrical Engineering and Energy, 2021, 40(12): 10-18. |
| [1] | Jinfeng WANG, Yue LIU, Hongjie ZHONG, Junming CAO, Xinglong WU. Recent advances in structural design, synthesis, and electrochemical applications of Mo-based electrode materials [J]. Energy Storage Science and Technology, 2025, 14(9): 3340-3353. |
| [2] | Yan ZHAO, Hao LIU, Zonglin YI, Li LI, Lijing XIE, Fangyuan SU. Interfacial behavior of FEC and VC at graphite anode of lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(9): 3249-3258. |
| [3] | Honghui LIU, Donghui LI, Qifeng QIAN, Lingchao XIAO, Lei XIONG, Zhongguo CHEN. Preparation of vanadium nitride-based electrode materials and their application progress in supercapacitors [J]. Energy Storage Science and Technology, 2025, 14(8): 3110-3121. |
| [4] | Xiaohan BAN, Mingxia ZHOU, Hongrui HU, Fuliang LIU, Dongwei MA, Bin SHI, Xiaogang ZHANG. Ultrahigh-power lithium-ion batteries based on nano/micro-structured LiCoO2 graded-particle cathode design [J]. Energy Storage Science and Technology, 2025, 14(8): 2950-2959. |
| [5] | Jiahui LIU, Weixiang BIAN, Dawei LI. In situ measurement and analysis of the electromechanical coupling performance of composite graphite electrodes in lithium batteries [J]. Energy Storage Science and Technology, 2025, 14(6): 2240-2247. |
| [6] | Jingjing RUAN, Xiangkun WU, Yonghui LI, Chongchong ZHAO, Shenshen LI, Tongfei WANG, Shengjie LIANG, Guihong GAO. Preparation and performance studies of low-cost graphite thick dry electrodes [J]. Energy Storage Science and Technology, 2025, 14(6): 2248-2255. |
| [7] | Yonglong DUAN, Xia HUA, Zijiao HAN, Bing XIE, Shubo HU, Aikui LI. Research progress on capacity decay and inhibition technology of all-vanadium flow batteries [J]. Energy Storage Science and Technology, 2025, 14(6): 2540-2554. |
| [8] | Hong ZHANG, Jinzhong LI, Xin LI, Yuan ZHANG. Parallel control of vanadium flow battery considering state of health [J]. Energy Storage Science and Technology, 2025, 14(6): 2442-2450. |
| [9] | Deshuai LIU, Huiqin ZHU, Ruihao SUN, Meng LI, Wenhao GONG, Xiaohui LI, Weiwei QIAN. Synergistic dual-additive boost cyclability of sodium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(5): 1858-1865. |
| [10] | Guipei XU, Hao LIU, Jiewen LAI, Yifeng LU, Hui HUANG, Huifang DI, Zhenbing WANG. Research progress on solvent-free electrode technology for supercapacitor and lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(4): 1445-1460. |
| [11] | Xiaohu SHI, Yixin HUANG, Tao ZOU, Yiting YUAN. Sulfonated polybenzimidazole membrane crosslinked by a star crosslinker with stable operation of high-performance all-vanadium flow batteries [J]. Energy Storage Science and Technology, 2025, 14(4): 1377-1385. |
| [12] | Zixin XIAO, Hong ZHANG, Lin XU. Nanowires modulating ion transport and interfaces in solid-state lithium batteries [J]. Energy Storage Science and Technology, 2025, 14(3): 1026-1039. |
| [13] | Yuelin LI, Zhiyu LIU, Sen GUO, Xiaojun LIU, Pengliang ZHANG, Chengcheng WANG, Yuan LIANG, Rui WANG. Research progress on electrode structure design of vanadium redox flow battery [J]. Energy Storage Science and Technology, 2025, 14(2): 601-612. |
| [14] | Hong WANG, Kaiyue ZHANG. Study on thermal treatment activation of carbon felt electrode for all-vanadium flow batteries [J]. Energy Storage Science and Technology, 2025, 14(2): 488-496. |
| [15] | Tong LIU, Guiting YANG, Hui BI, Yueni MEI, Shuo LIU, Yongji GONG, Wenlei LUO. Recent progress in high-energy and high-power lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(1): 54-76. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||