Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (4): 1445-1460.doi: 10.19799/j.cnki.2095-4239.2024.0997
• Energy Storage Materials and Devices • Previous Articles Next Articles
Guipei XU1(), Hao LIU2,3, Jiewen LAI1, Yifeng LU1, Hui HUANG1, Huifang DI2, Zhenbing WANG2(
)
Received:
2024-10-28
Revised:
2024-11-30
Online:
2025-04-28
Published:
2025-05-20
Contact:
Zhenbing WANG
E-mail:413536165@qq.com;wangzhenbing@sxicc.ac.cn
CLC Number:
Guipei XU, Hao LIU, Jiewen LAI, Yifeng LU, Hui HUANG, Huifang DI, Zhenbing WANG. Research progress on solvent-free electrode technology for supercapacitor and lithium-ion batteries[J]. Energy Storage Science and Technology, 2025, 14(4): 1445-1460.
Table 1
Properties of binders commonly used in dry electrode technology"
黏结剂 | 阳极稳定性 | 阴极稳定性 | 适用的干法电极技术 | 使用温度/℃ | 黏结剂属性 | 参考文献 |
---|---|---|---|---|---|---|
聚四氟乙烯(PTFE) | 不稳定 | 稳定 | 聚合物纤维化 | 25~80 | 机械变形 | [ |
聚偏二氟乙烯(PVDF) | 部分稳定 | 稳定 | 干粉喷涂沉积 | >80 | 热塑性 | [ |
聚环氧乙烷 | 部分稳定 | 电位>4 V不稳定 | 热熔挤压,3D打印 | 150~170 | 热塑性 | [ |
聚丙烯 | 稳定 | 稳定 | 热熔挤压 | 160~190 | 热塑性 | [ |
聚碳酸丙烯酯+氢化丁腈橡胶 | 不稳定 | 稳定 | 直接压制 | 40~90 | 热塑性 | [ |
Table 2
Dry electrodes versus wet electrodes"
对比项 | 湿法电极技术 | 干法电极技术 | 参考文献 |
---|---|---|---|
成本 | 电极干燥/溶剂NMP回收相关成本(47%)、材料成本(溶剂占比1%~2%) | 不使用溶剂NMP,无电极干燥和溶剂回收相关成本,总成本降低15% | [ |
对环境的影响 | 有毒溶剂,能耗高,CO2排放量大 | 无溶剂,能耗更低,每生产10 kWh的二氧化碳排放量减少1000 kg | [ |
生产效率 | 7个步骤,干燥、溶剂回收耗时>3 h) | 5个步骤,无需干燥时间,生产时间减少16.2%~21.4% | [ |
能量消耗 | 约47%的总能耗用于干燥和溶剂回收,每生产 10 kWh,干燥和溶剂回收耗电420 Wh | 无干燥和溶剂回收过程,能源成本降低38%~40% | [ |
兼容性 | 不适用于厚电极和固态电极的制备 | 在制备厚电极方面具有显著优势,可用于预锂化,可制备全固态电池的电极 | [ |
电极性能 | 厚电极中的黏结剂表现出梯度变化,颗粒黏附性较差(<4 mAh/cm2),孔隙率更高(4%~10%) | 特定黏结剂分布,倍率性能提高,孔隙率降低,颗粒黏附性更好(>5 mAh/cm2),电极机械强度显著提高 | [ |
Fig. 3
(a) The number of patents for dry powder spray deposition and polymer fibrillation in lithium-ion batteries[41]; (b) The number of published articles on the Web of Science with the keyword “lithium-ion batteries with dry electrodes or solvent-free electrodes” for the period 2006—2022[41]; (c) The distribution of patents for polymer fibrillation and dry powder spray deposition[24]; (d) Number of patents filed by different countries as a percentage of total patents[24]; (e) Number of patents filed by each country for polymer fibrillation and dry powder spray deposition[24]"
Fig. 4
(a) Schematic diagram of active graphene/activated carbon dry electrode preparation process[44]; (b) Diagram of the dispersion state of the electrode material[45]; (c) SEM images of the surface of the dry electrode[46]; (d) SEM images of the cross section of the dry electrode[46]; (e) SEM image of the surface of the wet electrode[46]; (f) SEM images of the cross section of the wet electrode[46]; (g)Capacity retention of supercapacitors during float charging[47]; (h) Resistance changes of supercapacitors during float charging[47]; (i) Rate performance of supercapacitors during float charging[47]"
Fig. 5
(a) Schematic diagram of polymer fibrillation used for the preparation of LFP electrode process[53]; (b) Schematic diagram of dry PVDF graphite electrode preparation process based on PTFE fibrillization[54]; (c) Schematic diagram of electrode preparation using dry powder spray deposition process[21]; (d) Schematic of the dry powder spray deposition process used to fabricate cathodes containing NMC, carbon black and PVDF[15]; (e) Schematic of NMC surfaces with different PVDF[62]"
Fig. 6
(a) Schematic of magnetron sputtering deposition setup[66]; (b) Schematic of all-solid-state cell using LiCoO2 thin film on Au and Pt single crystal (110) substrate[67]; (c) Specific energy of hypothetical LTO/LFP cell as a function of surface area and comparison between active material loading and commercial SoA[69]; (d) Schematic of dry process[29]; (e) Schematic of dry process for lithium-ion battery electrode preparation[70]"
Fig. 7
(a) Schematic of wet electrode process and direct pressing of dry electrodes for lithium-ion batteries[72]; (b) Schematic of uniformly applying a pressure of 2 MPa to a soft-packed cell using a pressure jig[73]; (c) Cross-sectional view of an all-solid-state battery[74]; (d) Schematic of a lithium-ion battery with 3D cross-finger microcellular architecture prepared by 3D printing[75]; (e) Schematic of a cross-finger electrode 3D-printed[76]"
Table 3
Summary of advantages, disadvantages and applications of six dry electrode technologies"
干法电极技术 | 技术原理 | 优势 | 弊端 | 应用领域 |
---|---|---|---|---|
聚合物纤维化 | PTFE在高剪切力作用下纤维化 | 与现有的生产线兼容,可大规模生产 | 阳极不稳定,目前只能采用PTFE作为黏结剂 | 阴极,碳阳极,全固态电池的电极 |
干法喷涂沉积 | 干粉混合物在高压下沉积 | 电极厚度和密度可控,可用于柔性电极 | 设备昂贵,生产环境要求高 | 阳极,阴极 |
气相沉积 | 材料先蒸发汽化再沉积 | 多种汽化方法可选择 | 生产设备昂贵,规模扩大较难实现 | 小尺寸电极 |
热熔挤压 | 颗粒混合、挤出、脱黏和烧结 | 可制备厚电极 | 工艺复杂,能耗高,需要牺牲黏结剂 | 用于大规模生产的阴极,碳阳极 |
直接压制 | 活性材料充分混合后直接压制为电极 | 操作简单,黏结剂用量小 | 生产规模小,需要活性材料可压缩 | 阴极,阳极,全固态电池电极 |
3D打印 | 材料熔融后逐层打印 | 电极厚度和形貌可定制 | 设备昂贵,生产规模小,活性材料含量低 | 微电子和可穿戴设备用电极 |
1 | LI J L, FLEETWOOD J, BLAKE HAWLEY W, et al. From materials to cell: State-of-the-art and prospective technologies for lithium-ion battery electrode processing[J]. Chemical Reviews, 2022, 122(1): 903-956. DOI: 10.1021/acs.chemrev.1c00565. |
2 | 滕国营, 王新改, 孟海军, 等. 高功率储能器件的研究进展[J]. 储能科学与技术, 2024, 13(10): 3442-3452. DOI: 10.19799/j.cnki.2095-4239.2024.0312. |
TENG G Y, WANG X G, MENG H J, et al. Research progress of high-power energy storage devices[J]. Energy Storage Science and Technology, 2024, 13(10): 3442-3452. DOI: 10.19799/j.cnki.2095-4239.2024.0312. | |
3 | 廖雅贇, 周峰, 张颖曦, 等. 锂离子电池快充石墨负极材料研究进展[J]. 储能科学与技术, 2024, 13(1): 130-142. DOI: 10.19799/j.cnki.2095-4239.2023.0777. |
LIAO Y Y, ZHOU F, ZHANG Y X, et al. Research progress on fast-charging graphite anode materials for lithium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(1): 130-142. DOI: 10.19799/j.cnki.2095-4239.2023.0777. | |
4 | 宋元明, 刘亚杰, 金光, 等. 锂离子电池/超级电容器混合储能系统能量管理方法综述[J]. 储能科学与技术, 2024, 13(2): 652-668. DOI: 10.19799/j.cnki.2095-4239.2023.0568. |
SONG Y M, LIU Y J, JIN G, et al. Review of energy management methods for lithium-ion battery/supercapacitor hybrid energy storage systems[J]. Energy Storage Science and Technology, 2024, 13(2): 652-668. DOI: 10.19799/j.cnki.2095-4239. 2023.0568. | |
5 | 李珂, 郝奕帆, 方振华, 等. 高功率化学电源体系发展及军事应用分析[J]. 储能科学与技术, 2024, 13(2): 436-461. DOI: 10.19799/j.cnki.2095-4239.2023.0501. |
LI K, HAO Y F, FANG Z H, et al. Development and military application analysis of high-power chemical power supply system[J]. Energy Storage Science and Technology, 2024, 13(2): 436-461. DOI: 10.19799/j.cnki.2095-4239.2023.0501. | |
6 | ZHAN C, CAI F, AMINE K, et al. Advanced lithium batteries for automobile applications at ABAA-9[J]. ACS Energy Letters, 2017, 2(7): 1628-1631. DOI: 10.1021/acsenergylett.7b00407. |
7 | 陈海生, 李泓, 徐玉杰, 等. 2023年中国储能技术研究进展[J]. 储能科学与技术, 2024, 13(5): 1359-1397. DOI: 10.19799/j.cnki.2095-4239.2024.0441. |
CHEN H S, LI H, XU Y J, et al. Research progress on energy storage technologies of China in 2023[J]. Energy Storage Science and Technology, 2024, 13(5): 1359-1397. DOI: 10.19799/j.cnki.2095-4239.2024.0441. | |
8 | HAWLEY W B, LI J L. Electrode manufacturing for lithium-ion batteries—Analysis of current and next generation processing[J]. Journal of Energy Storage, 2019, 25: 100862. DOI: 10.1016/j.est.2019.100862. |
9 | WOOD D L, WOOD M, LI J L, et al. Perspectives on the relationship between materials chemistry and roll-to-roll electrode manufacturing for high-energy lithium-ion batteries[J]. Energy Storage Materials, 2020, 29: 254-265. DOI: 10.1016/j.ensm. 2020.04.036. |
10 | KRAYTSBERG A, EIN-ELI Y. Conveying advanced Li-ion battery materials into practice the impact of electrode slurry preparation skills[J]. Advanced Energy Materials, 2016, 6(21): 1600655. DOI: 10.1002/aenm.201600655. |
11 | PETTINGER K H, DONG W. When does the operation of a battery become environmentally positive?[J]. Journal of the Electrochemical Society, 2017, 164(1): A6274-A6277. DOI: 10.1149/2.0401701jes. |
12 | BAUER W, NÖTZEL D, WENZEL V, et al. Influence of dry mixing and distribution of conductive additives in cathodes for lithium ion batteries[J]. Journal of Power Sources, 2015, 288: 359-367. DOI: 10.1016/j.jpowsour.2015.04.081. |
13 | JEONG D, LEE J. Electrode design optimization of lithium secondary batteries to enhance adhesion and deformation capabilities[J]. Energy, 2014, 75: 525-533. DOI: 10.1016/j.energy. 2014.08.013. |
14 | LIU J, LUDWIG B, LIU Y T, et al. Scalable dry printing manufacturing to enable long-life and high energy lithium-ion batteries[J]. Advanced Materials Technologies, 2017, 2(10): 1700106. DOI: 10.1002/admt.201700106. |
15 | AL-SHROOFY M, ZHANG Q L, XU J G, et al. Solvent-free dry powder coating process for low-cost manufacturing of LiNi1/3Mn1/3Co1/3O2 cathodes in lithium-ion batteries[J]. Journal of Power Sources, 2017, 352: 187-193. DOI: 10.1016/j.jpowsour. 2017.03.131. |
16 | GAO Z J, FU J Z, PODDER C, et al. Particle interactions during dry powder mixing and their effect on solvent-free manufactured electrode properties[J]. Journal of Energy Storage, 2024, 83: 110605. DOI: 10.1016/j.est.2024.110605. |
17 | KWON K, KIM J, HAN S, et al. Low-resistance LiFePO4 thick film electrode processed with dry electrode technology for high-energy-density lithium-ion batteries[J]. Small Science, 2024, 4(5): 2300302. DOI: 10.1002/smsc.202300302. |
18 | 郭德超, 郭义敏, 张啟文, 等. 锂离子电池用无溶剂干法电极的制备及其性能研究[J]. 储能科学与技术, 2021, 10(4): 1311-1316. DOI: 10.19799/j.cnki.2095-4239.2021.0081. |
GUO D C, GUO Y M, ZHANG Q W, et al. Preparation and characterization of solvent-free dry electrodes for lithium ion batteries[J]. Energy Storage Science and Technology, 2021, 10(4): 1311-1316. DOI: 10.19799/j.cnki.2095-4239.2021.0081. | |
19 | LU Y, ZHAO C Z, YUAN H, et al. Dry electrode technology, the rising star in solid-state battery industrialization[J]. Matter, 2022, 5(3): 876-898. DOI: 10.1016/j.matt.2022.01.011. |
20 | ŻENKIEWICZ M. Methods for the calculation of surface free energy of solids[J]. Journal of Achievements in Materials and Manufacturing Engineering, 2007, 24(1): 137. |
21 | LUDWIG B, LIU J, CHEN I M, et al. Understanding interfacial-energy-driven dry powder mixing for solvent-free additive manufacturing of Li-ion battery electrodes[J]. Advanced Materials Interfaces, 2017, 4(21): 1700570. DOI: 10.1002/admi.201700570. |
22 | ZHANG Z H, WU L P, ZHOU D, et al. Flexible sulfide electrolyte thin membrane with ultrahigh ionic conductivity for all-solid-state lithium batteries[J]. Nano Letters, 2021, 21(12): 5233-5239. DOI: 10.1021/acs.nanolett.1c01344. |
23 | HIPPAUF F, SCHUMM B, DOERFLER S, et al. Overcoming binder limitations of sheet-type solid-state cathodes using a solvent-free dry-film approach[J]. Energy Storage Materials, 2019, 21: 390-398. DOI: 10.1016/j.ensm.2019.05.033. |
24 | LUDWIG B, ZHENG Z F, SHOU W, et al. Solvent-free manufacturing of electrodes for lithium-ion batteries[J]. Scientific Reports, 2016, 6: 23150. DOI: 10.1038/srep23150. |
25 | HELMERS L, FROBÖSE L, FRIEDRICH K, et al. Sustainable solvent-free production and resulting performance of polymer electrolyte-based all-solid-state battery electrodes[J]. Energy Technology, 2021, 9(3): 2000923. DOI: 10.1002/ente.202000923. |
26 | MAUREL A, ARMAND M, GRUGEON S, et al. Poly(ethylene oxide)–LiTFSI solid polymer electrolyte filaments for fused deposition modeling three-dimensional printing[J]. Journal of the Electrochemical Society, 2020, 167(7): 070536. DOI: 10.1149/1945-7111/ab7c38. |
27 | JARDIEL T, SOTOMAYOR M E, LEVENFELD B, et al. Optimization of the processing of 8-YSZ powder by powder injection molding for SOFC electrolytes[J]. International Journal of Applied Ceramic Technology, 2008, 5(6): 574-581. DOI: 10.1111/j.1744-7402.2008.02286.x. |
28 | DE LA TORRE-GAMARRA C, SOTOMAYOR M E, SANCHEZ J Y, et al. High mass loading additive-free LiFePO4 cathodes with 500 μm thickness for high areal capacity Li-ion batteries[J]. Journal of Power Sources, 2020, 458: 228033. DOI: 10.1016/j.jpowsour.2020.228033. |
29 | EL KHAKANI S, VERDIER N, LEPAGE D, et al. Melt-processed electrode for lithium ion battery[J]. Journal of Power Sources, 2020, 454: 227884. DOI: 10.1016/j.jpowsour.2020.227884. |
30 | BIN HAMZAH H H, KEATTCH O, COVILL D, et al. The effects of printing orientation on the electrochemical behaviour of 3D printed acrylonitrile butadiene styrene (ABS)/carbon black electrodes[J]. Scientific Reports, 2018, 8(1): 9135. DOI: 10.1038/s41598-018-27188-5. |
31 | WOOD D L, QUASS J D, LI J L, et al. Technical and economic analysis of solvent-based lithium-ion electrode drying with water and NMP[J]. Drying Technology, 2018, 36(2): 234-244. DOI: 10.1080/07373937.2017.1319855. |
32 | YAO W L, CHOUCHANE M, LI W K, et al. A 5 V-class cobalt-free battery cathode with high loading enabled by dry coating[J]. Energy & Environmental Science, 2023, 16(4): 1620-1630. DOI: 10.1039/D2EE03840D. |
33 | ZACKRISSON M, AVELLÁN L, ORLENIUS J. Life cycle assessment of lithium-ion batteries for plug-in hybrid electric vehicles-Critical issues[J]. Journal of Cleaner Production, 2010, 18(15): 1519-1529. DOI: 10.1016/j.jclepro.2010.06.004. |
34 | ERAKCA M, BAUMANN M, BAUER W, et al. Energy flow analysis of laboratory scale lithium-ion battery cell production[J]. iScience, 2021, 24(5): 102437. DOI: 10.1016/j.isci.2021.102437. |
35 | YUAN C, DENG Y L, LI T H, et al. Manufacturing energy analysis of lithium ion battery pack for electric vehicles[J]. CIRP Annals, 2017, 66(1): 53-56. DOI: 10.1016/j.cirp.2017.04.109. |
36 | WANG C H, YU R Z, DUAN H, et al. Solvent-free approach for interweaving freestanding and ultrathin inorganic solid electrolyte membranes[J]. ACS Energy Letters, 2022, 7(1): 410-416. DOI: 10.1021/acsenergylett.1c02261. |
37 | KATO Y, SHIOTANI S, MORITA K, et al. All-solid-state batteries with thick electrode configurations[J]. The Journal of Physical Chemistry Letters, 2018, 9(3): 607-613. DOI: 10.1021/acs.jpclett.7b02880. |
38 | BRYNTESEN S N, STRØMMAN A H, TOLSTOREBROV I, et al. Opportunities for the state-of-the-art production of LIB electrodes-a review[J]. Energies, 2021, 14(5): 1406. DOI: 10.3390/en14051406. |
39 | ROLLAG K, JUAREZ-ROBLES D, DU Z J, et al. Drying temperature and capillarity-driven crack formation in aqueous processing of Li-ion battery electrodes[J]. ACS Applied Energy Materials, 2019, 2(6): 4464-4476. DOI: 10.1021/acsaem.9b00704. |
40 | LI Y X, WU Y J, WANG Z X, et al. Progress in solvent-free dry-film technology for batteries and supercapacitors[J]. Materials Today, 2022, 55: 92-109. DOI: 10.1016/j.mattod.2022.04.008. |
41 | ZHANG Y, LU S, WANG Z S, et al. Recent technology development in solvent-free electrode fabrication for lithium-ion batteries[J]. Renewable and Sustainable Energy Reviews, 2023, 183: 113515. DOI: 10.1016/j.rser.2023.113515. |
42 | 陈艺, 秦琪, 赵龙, 等. 新型储能技术的中国专利布局分析[J]. 储能科学与技术, 2024, 13(6): 2089-2098. DOI: 10.19799/j.cnki.2095-4239.2024.0006. |
CHEN Y, QIN Q, ZHAO L, et al. Analysis of China's patent landscape for new energy storage technologies[J]. Energy Storage Science and Technology, 2024, 13(6): 2089-2098. DOI: 10.19799/j.cnki.2095-4239.2024.0006. | |
43 | 何凤荣, 张啟文, 郭德超, 等. 电极结构对(NCM+AC)/HC混合型电容器电性能的影响[J]. 储能科学与技术, 2022, 11(7): 2051-2058. DOI: 10.19799/j.cnki.2095-4239.2021.0702. |
HE F R, ZHANG Q W, GUO D C, et al. Influences of electrode structure on the electrical properties of(NMC+AC)/HC hybrid capacitor[J]. Energy Storage Science and Technology, 2022, 11(7): 2051-2058. DOI: 10.19799/j.cnki.2095-4239.2021.0702. | |
44 | 郑超, 周旭峰, 刘兆平, 等. 活性石墨烯/活性炭干法复合电极片制备及其在超级电容器中的应用[J]. 储能科学与技术, 2016, 5(4): 486-491. DOI: 10.12028/j.issn.2095-4239.2016.04.012. |
ZHENG C, ZHOU X F, LIU Z P, et al. Preparation of activated graphene/activated carbon dry composite electrode and its application in supercapacitors[J]. Energy Storage Science and Technology, 2016, 5(4): 486-491. DOI: 10.12028/j.issn.2095-4239.2016.04.012. | |
45 | 刘凤丹, 薛龙均. 成型工艺对超级电容器活性炭电极性能的影响[J]. 电子元件与材料, 2017, 36(2): 25-28. DOI: 10.14106/j.cnki.1001-2028.2017.02.006. |
LIU F D, XUE L J. Influences of the fabrication technology on the properties of activited carbon electrode in ultracapaciors[J]. Electronic Components and Materials, 2017, 36(2): 25-28. DOI: 10.14106/j.cnki.1001-2028.2017.02.006. | |
46 | 郭义敏, 郭德超, 张啟文, 等. 电极纤维化结构对超级电容器电性能的影响[J]. 电子元件与材料, 2021, 40(6): 530-535. DOI: 10.14106/j.cnki.1001-2028.2021.0179. |
GUO Y M, GUO D C, ZHANG Q W, et al. Influences of electrode fibrous structure on the electrical performances of supercapacitor[J]. Electronic Components and Materials, 2021, 40(6): 530-535. DOI: 10.14106/j.cnki.1001-2028.2021.0179. | |
47 | 张凯. 四种活性炭双电层电容器电极制备工艺与电容特性[D]. 哈尔滨: 哈尔滨工业大学, 2017. |
ZHANG K. Study on preparation process and capacitive properties of the supercapacitors based on four activated carbons[D]. Harbin: Harbin Institute of Technology, 2017. | |
48 | BRETON E J, WOLF J D, WORDEN D. Article of fibrillated polytetrafluoroethylene containing high volumes of particulate material and methods of making and using same: US19740499583[P/OL]. 1980-03-18. https://www.freepatentsonline.com/4194040.html. |
49 | SINGER R M. Catalytic dry powder material for fuel cell electrodes comprising fluorocarbon polymer and precatalyzed carbon: US4177159[P/OL]. 1979-12-04. https://www.freepatentsonline.com/4177159.html. |
50 | BERNSTEIN P G R, COFFEY N J, JAMES P. Production of a cell electrode system: US4320184[P/OL]. 1982-03-16. https://www.freepatentsonline.com/4320184.html. |
51 | MITCHELL P S, XI X M, ZOU B, et al. Dry particle packaging systems and methods of making same: US20060246343[P/OL]. 2006-11-02. https://www.freepatentsonline.com/y2006/0246343.html. |
52 | MITCHELL P S, XI X M, ZHONG L D. Recyclable dry-particle based adhesive electrode and methods of making same: US11430613[P/OL]. 2022-08-30. https://www.freepatentsonline.com/11430613.html. |
53 | ZHOU H T, LIU M H, GAO H Q, et al. Dense integration of solvent-free electrodes for Li-ion supercabattery with boosted low temperature performance[J]. Journal of Power Sources, 2020, 473: 228553. DOI: 10.1016/j.jpowsour.2020.228553. |
54 | ZHANG Y D, TIAN J, XIAO F, et al. B cell-activating factor and its targeted therapy in autoimmune diseases[J]. Cytokine & Growth Factor Reviews, 2022, 64: 57-70. DOI: 10.1016/j.cytogfr. 2021.11.004. |
55 | ZHANG Y, LU S, LOU F L, et al. Leveraging synergies by combining polytetrafluorethylene with polyvinylidene fluoride for solvent-free graphite anode fabrication[J]. Energy Technology, 2022, 10(11): 2200732. DOI: 10.1002/ente.202200732. |
56 | ZHONG L. Low cost high performance electrode for energy storage devices and systems and method of making same: US20140238576 [P/OL]. 2014-08-28. https://www.freepatentsonline.com/y2014/0238576.html. |
57 | ZHONG L S, SHAW E, KIM B K. Dry electrode manufacture with lubricated active material mixture: US20220077453[P/OL]. 2022-03-10. https://www.freepatentsonline.com/y2022/0077453.html. |
58 | ZHONG L S, QIU K, ZEA M, SHAW E. Dry electrode manufacture by temperature activation method: US11616218[P/OL]. 2023-03-28. https://www.freepatentsonline.com/11616218.html. |
59 | SASAKI H T, NOGUCHI T. Lithium ion secondary battery: US20150064554[P/OL]. 2015-03-05. https://www.freepatentsonline.com/y2015/0064554.html. |
60 | ORISAKA E N-S, SAKASHITA Y N, NAKATANI R K, et al. Powder supply device for secondary battery and apparatus for manufacturing electrode body: US20150255778A1[P/OL]. 2015-09-10. https://www.freepatentsonline.com/y2015/0255778.html. |
61 | SCHÄLICKE G, LANDWEHR I, DINTER A, et al. Solvent-free manufacturing of electrodes for lithium-ion batteries via electrostatic coating[J]. Energy Technology, 2020, 8(2): 1900309. DOI: 10.1002/ente.201900309. |
62 | WANG M, HU J Z, WANG Y K, et al. The influence of polyvinylidene fluoride (PVDF) binder properties on LiNi0.33Co0.33Mn0.33O2 (NMC) electrodes made by a dry-powder-coating process[J]. ECS Meeting Abstracts, 2019, MA2019-02(5): 367. DOI: 10.1149/ma2019-02/5/367. |
63 | SCROSATI B. Recent advances in lithium solid state batteries[J]. Journal of Applied Electrochemistry, 1972, 2(3): 231-238. DOI: 10.1007/BF02354981. |
64 | KANEHORI K, MATSUMOTO K, MIYAUCHI K, et al. Thin film solid electrolyte and its application to secondary lithium cell[J]. Solid State Ionics, 1983, 9: 1445-1448. DOI: 10.1016/0167-2738(83)90192-3. |
65 | HAMPDEN-SMITH M J, KODAS T T. Chemical vapor deposition of metals: Part 1. an overview of CVD processes[J]. Chemical Vapor Deposition, 1995, 1(1): 8-23. DOI: 10.1002/cvde. 19950010103. |
66 | CHIU K F. Lithium cobalt oxide thin films deposited at low temperature by ionized magnetron sputtering[J]. Thin Solid Films, 2007, 515(11): 4614-4618. DOI: 10.1016/j.tsf.2006.11.073. |
67 | SHIRAKI S, OKI H, TAKAGI Y, et al. Fabrication of all-solid-state battery using epitaxial LiCoO2 thin films[J]. Journal of Power Sources, 2014, 267: 881-887. DOI: 10.1016/j.jpowsour. 2014.05.133. |
68 | BOUGUERN M D, MADIKERE RAGHUNATHA REDDY A K, LI X, et al. Engineering dry electrode manufacturing for sustainable lithium-ion batteries[J]. Batteries, 2024, 10(1): 39. DOI: 10.3390/batteries10010039. |
69 | SOTOMAYOR M E, DE LA TORRE-GAMARRA C, LEVENFELD B, et al. Ultra-thick battery electrodes for high gravimetric and volumetric energy density Li-ion batteries[J]. Journal of Power Sources, 2019, 437: 226923. DOI: 10.1016/j.jpowsour. 2019.226923. |
70 | ASTAFYEVA K, DOUSSET C, BUREAU Y, et al. High energy Li-ion electrodes prepared via a solventless melt process[J]. Batteries & Supercaps, 2020, 3(4): 341-343. DOI: 10.1002/batt.201900187. |
71 | WIEGMANN E, CAVERS H, DIENER A, et al. Semi-dry extrusion-based processing for graphite anodes: Morphological insights and electrochemical performance[J]. Energy Technology, 2023, 11(9): 2300341. DOI: 10.1002/ente.202300341. |
72 | KIRSCH DYLAN J, LACEY STEVEN D, KUANG Y D, et al. Scalable dry processing of binder-free lithium-ion battery electrodes enabled by holey graphene[J]. ACS Applied Energy Materials, 2019, 2(5): 2990-2997. |
73 | LEE Y G, FUJIKI S, JUNG C, et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes[J]. Nature Energy, 2020, 5(4): 299-308. DOI: 10.1038/s41560-020-0575-z. |
74 | AUVERGNIOT J, CASSEL A, LEDEUIL J B, et al. Interface stability of argyrodite Li6PS5Cl toward LiCoO2, LiNi1/3Co1/3Mn1/3O2, and LiMn2O4 in bulk all-solid-state batteries[J]. Chemistry of Materials, 2017, 29(9): 3883-3890. DOI: 10.1021/acs.chemmater.6b04990. |
75 | SUN K, WEI T S, AHN B Y, et al. 3D printing of interdigitated Li-ion microbattery architectures[J]. Advanced Materials, 2013, 25(33): 4539-4543. DOI: 10.1002/adma.201301036. |
76 | FU K, WANG Y B, YAN C Y, et al. Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries[J]. Advanced Materials, 2016, 28(13): 2587-2594. DOI: 10.1002/adma. 201505391. |
77 | WEI T S, AHN B Y, GROTTO J, et al. 3D printing of customized Li-ion batteries with thick electrodes[J]. Advanced Materials, 2018, 30(16): 1703027. DOI: 10.1002/adma.201703027. |
78 | LYU Z Y, LIM G J H, KOH J J, et al. Design and manufacture of 3D-printed batteries[J]. Joule, 2021, 5(1): 89-114. DOI: 10.1016/j.joule.2020.11.010. |
79 | FU K, YAO Y G, DAI J Q, et al. Progress in 3D printing of carbon materials for energy-related applications[J]. Advanced Materials, 2017, 29(9): 1603486. DOI: 10.1002/adma.201603486. |
80 | ELDER B, NEUPANE R, TOKITA E, et al. Nanomaterial patterning in 3D printing[J]. Advanced Materials, 2020, 32(17): 1907142. DOI: 10.1002/adma.201907142. |
[1] | Xingqun LIAO, Rui YANG, Lijuan YU, Dalin HU, Feng XIAO, Jing HU, Zhouguang LU. 2,6-pyridine dimethyl acetonitrile: A multifunctional electrolyte additive for stabilizing high-voltage LiCoO2 [J]. Energy Storage Science and Technology, 2025, 14(4): 1331-1339. |
[2] | Wei CAO, Fei CHEN, Xiangdong KONG, Zhicheng ZHU, Xuebing HAN, Languang LU, Yuejiu ZHENG. Progress of coating process for lithium-ion battery electrodes [J]. Energy Storage Science and Technology, 2025, 14(1): 90-103. |
[3] | Zhiyong WANG, Junyao CAI, Yingqi SHE, Shulin ZHONG, Kanghua PAN. Surface-modification of graphite with N-heterocyclic conducting polymers as high performance anodes for Li-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(8): 2511-2518. |
[4] | Jingjing LEI, Zehao LI, Binbin CHEN, Denggao HUANG. Estimation of internal battery temperature based on electrochemical impedance spectroscopy [J]. Energy Storage Science and Technology, 2024, 13(8): 2823-2834. |
[5] | Yinbao MIAO, Wenhua ZHANG, Weihao LIU, Shuai WANG, Zhe CHEN, Wang PENG, Jie ZENG. Preparation and performance of lithium-rich cathode material Li1.2Ni0.13Co0.13Mn0.54O2 [J]. Energy Storage Science and Technology, 2024, 13(5): 1427-1434. |
[6] | Chunzheng LIU, Peipei LAI, Zhuo SUN, Er NIE, Zhejuan ZHANG. Dented surface on silica-carbon particles to improve the electrochemical performance of lithium-ion battery anode [J]. Energy Storage Science and Technology, 2024, 13(4): 1302-1309. |
[7] | Qi LIAO, Xiaolin CAO, Yibo DENG, Yaolin YANG, Ting CHEN. Heat dissipation simulation of tram supercapacitor module [J]. Energy Storage Science and Technology, 2024, 13(2): 702-711. |
[8] | Xin LIU, Xiling MAO, Xinyu YAN, Junqiang WANG, Mengwei LI. Preparation and electrochemical properties of NiMn-MOF with 3D pore network electrode materials [J]. Energy Storage Science and Technology, 2024, 13(2): 361-369. |
[9] | Panchun TANG, Rong YAN, Can ZHANG, Ze SUN. Simulation of air- and liquid-cooled thermal management of stacked automotive supercapacitors [J]. Energy Storage Science and Technology, 2024, 13(2): 483-491. |
[10] | Zhifeng SONG, Weifeng DUAN, Lei MA. Simulation of power storage power regulation system supported by ultracapacitor technology [J]. Energy Storage Science and Technology, 2024, 13(2): 623-625. |
[11] | Yihan Li, Shigang LU, Jing WANG, Wangjun ZHA, Zhenghang DAI, Yitong GUO, Zexi YANG. Effect of irreversible lithium plating at low temperature on the performance degradation of LiFePO4 lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(10): 3656-3665. |
[12] | Yuchao QIU, Baishuang CHEN, Cheng CHEN, Ruipeng QIAN. Quasi-static constitutive modeling of lithium-ion battery materials under compression [J]. Energy Storage Science and Technology, 2024, 13(10): 3518-3522. |
[13] | Yue LI, Bo WANG, Nan WU. Preparation and lithium storage performance of graphene/Si/SiO x nanocomposites [J]. Energy Storage Science and Technology, 2023, 12(9): 2752-2759. |
[14] | Jiangwei SHEN, Canbiao ZHOU, Xing SHU, Zheng CHEN, Yonggang LIU. State of charge estimation for lithium batteries based on an improved electrochemical model at a wide temperature environment [J]. Energy Storage Science and Technology, 2023, 12(9): 2904-2916. |
[15] | Man CHEN, Zhixiang CHENG, Chunpeng ZHAO, Peng PENG, Qikai LEI, Kaiqiang JIN, Qingsong WANG. Numerical simulation study on explosion hazards of lithium-ion battery energy storage containers [J]. Energy Storage Science and Technology, 2023, 12(8): 2594-2605. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||