[1] |
GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: A perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176. DOI: 10.1021/ja3091438.
|
[2] |
李珂, 郝奕帆, 方振华, 等. 高功率化学电源体系发展及军事应用分析[J]. 储能科学与技术, 2024, 13(2): 436-461. DOI: 10.19799/j.cnki.2095-4239.2023.0501.
|
|
LI K, HAO Y F, FANG Z H, et al. Development and military application analysis of high-power chemical power supply system[J]. Energy Storage Science and Technology, 2024, 13(2): 436-461. DOI: 10.19799/j.cnki.2095-4239.2023.0501.
|
[3] |
刘通, 杨瑰婷, 毕辉, 等. 高能量密度与高功率密度兼顾型锂离子电池研究现状与展望[J]. 储能科学与技术, 2025, 14(1): 54-76. DOI: 10.19799/j.cnki.2095-4239.2024.0611.
|
|
LIU T, YANG G T, BI H, et al. Recent progress in high-energy and high-power lithium-ion batteries[J]. Energy Storage Science and Technology, 2025, 14(1): 54-76. DOI: 10.19799/j.cnki.2095-4239. 2024.0611.
|
[4] |
滕国营, 王新改, 孟海军, 等. 高功率储能器件的研究进展[J]. 储能科学与技术, 2024, 13(10): 3442-3452. DOI: 10.19799/j.cnki.2095-4239.2024.0312.
|
|
TENG G Y, WANG X G, MENG H J, et al. Research progress of high-power energy storage devices[J]. Energy Storage Science and Technology, 2024, 13(10): 3442-3452. DOI: 10.19799/j.cnki. 2095-4239.2024.0312.
|
[5] |
陈港欣, 孙现众, 张熊, 等. 高功率锂离子电池研究进展[J]. 工程科学学报, 2022, 44(4): 612-624. DOI: 10.13374/j.issn2095-9389.2021. 08.16.004.
|
|
CHEN G X, SUN X Z, ZHANG X, et al. Progress of high-power lithium-ion batteries[J]. Chinese Journal of Engineering, 2022, 44(4): 612-624. DOI: 10.13374/j.issn2095-9389.2021.08.16.004.
|
[6] |
周润怡, 黄艳忠, 祁义恒, 等. 功率型电化学储能技术研究进展[J]. 动力工程学报, 2024, 44(3): 406-417. DOI: 10.19805/j.cnki.jcspe.2024. 230633.
|
|
ZHOU R Y, HUANG Y Z, QI Y H, et al. Review on high-power electrochemical energy storage technology[J]. Journal of Chinese Society of Power Engineering, 2024, 44(3): 406-417. DOI: 10.19805/j.cnki.jcspe.2024.230633.
|
[7] |
MA J, XIANG Y, XU J Y, et al. Reducing lithium-diffusion barrier on the wadsley-roth crystallographic shear plane via low-valent cation doping for ultrahigh power lithium-ion batteries[J]. Advanced Energy Materials, 2025, 15(12): 2403623. DOI: 10. 1002/aenm.202403623.
|
[8] |
CHEN W B, WANG K, LI Y L, et al. Minimize the electrode concentration polarization for high-power lithium batteries[J]. Advanced Functional Materials, 2024, 34(52): 2410926. DOI: 10.1002/adfm.202410926.
|
[9] |
LIU L W, XIE H X, ZHENG Y S, et al. Multicomponent anodes based on amorphous ZnP2 for fast-charging/discharging lithium-ion batteries[J]. Advanced Energy Materials, 2025, 15(17): 2404900. DOI: 10.1002/aenm.202404900.
|
[10] |
ZUO Y X, LIU J H, WANG H C, et al. T#2-Li0.69CoO2: A durable, high-capacity, high-rate cathode material for lithium-ion batteries[J]. Advanced Materials, 2025, 37(3): 2412920. DOI: 10.1002/adma.202412920.
|
[11] |
高桂红, 李珅珅, 刘福园, 等. 颗粒级配对锂浆料电池性能的影响[J]. 储能科学与技术, 2023, 12(2): 329-338. DOI: 10.19799/j.cnki.2095 -4239.2022.0537.
|
|
GAO G H, LI S S, LIU F Y, et al. Study on the influence of particle composition on the performance of lithium slurry batteries[J]. Energy Storage Science and Technology, 2023, 12(2): 329-338. DOI: 10.19799/j.cnki.2095-4239.2022.0537.
|
[12] |
TANG Y X, ZHANG Y Y, LI W L, et al. Rational material design for ultrafast rechargeable lithium-ion batteries[J]. Chemical Society Reviews, 2015, 44(17): 5926-5940. DOI: 10.1039/C4CS00442F.
|
[13] |
JI X H, WEI Y H, YANG H Z, et al. Extended plateau capacity of hard carbon anode for high energy lithium-ion batteries[J]. Small, 2024, 20(42): 2402616. DOI: 10.1002/smll.202402616.
|
[14] |
LIU Q, DUAN Z Q, QI Q Q, et al. Pressure effect on mechanical and electrochemical properties of lithium cobalt oxide powder materials[J]. Batteries & Supercaps, 2024, 7(10): e202400361. DOI: 10.1002/batt.202400361.
|
[15] |
孙智鹏, 陈立铎, 徐梓荐, 等. 锂离子电池典型温度与倍率放电特性分析[J]. 电源技术, 2020, 44(8): 1090-1092, 1222. DOI: 10.3969/j.issn.1002-087X.2020.08.003.
|
|
SUN Z P, CHEN L D, XU Z J, et al. Analysis of typical temperature and rate discharge characteristics of Li-ion batteries[J]. Chinese Journal of Power Sources, 2020, 44(8): 1090-1092, 1222. DOI: 10.3969/j.issn.1002-087X.2020.08.003.
|