Energy Storage Science and Technology ›› 2013, Vol. 2 ›› Issue (2): 112-125.doi: 10.3969/j.issn.2095-4239.2013.02.004
• Research highlight • Previous Articles Next Articles
DONG Jinping, SUN Yang, TANG Chun, LIN Mingxiang, XU Kaiqi, YAN Yong, CHEN Bin, WANG Hao, HUANG Xuejie
Received:
2013-02-06
Online:
2013-04-19
Published:
2013-04-19
Contact:
黄学杰,研究员,博士生导师,主要研究方向为锂二次电池及关键材料,E-mail:xjhuang@iphy.ac.cn.
CLC Number:
DONG Jinping, SUN Yang, TANG Chun, LIN Mingxiang, XU Kaiqi, YAN Yong, CHEN Bin, WANG Hao, HUANG Xuejie. Reviews of selected 100 recent papers for lithium batteries (Dec. 1,2012 to Jan. 31, 2013)[J]. Energy Storage Science and Technology, 2013, 2(2): 112-125.
[1] Lee Y R,Woo M A,Lee K M, et al . A layer-by-layer assembly route to Mn 1/3 Co 1/3 Ni 1/3 O 2 hollow spheres with electrochemical activity[J]. Journal of Physics and Chemistry of Solids ,2012,73(12):1492-1495. [2] Liu W,Wang M,Gao X L, et al . Improvement of the high-temperature,high-voltage cycling performance of LiNi 0.5 Co 0.2 Mn 0.3 O 2 cathode with TiO 2 coating[J]. Journal of Alloys and Compounds ,2012,543:181-188. [3] Liu X Z,Li H Q,Yoo E, et al . Fabrication of FePO 4 layer coated LiNi 1/3 Co 1/3 Mn 1/3 O 2 :Towards high-performance cathode materials for lithium ion batteries [J] . Electrochimica Acta ,2012,83:253-258. [4] Park J,Kalnaus S,Han S, et al . In situ atomic force microscopy studies on lithium (de)intercalation-induced morphology changes in Li x CoO 2 micro-machined thin film electrodes[J]. Journal of Power Sources ,2013,222:417-425. [5] Cho S W,Kim G O,Ju J H, et al . X-ray absorption spectroscopy studies of the Ni ion of Li(Ni 0.8 Co 0.15 Al 0.05 ) (0.8) (Ni 0.5 Mn 0.5 ) (0.2) O 2 with a core-shell structure and LiNi 0.8 Co 0.15 Al 0.05 O 2 as cathode materials[J]. Materials Research Bulletin ,2012,47(10):2830-2833. [6] H Y S,Su W N,Chen J M, et al . Soft X-ray absorption spectroscopic and Raman studies on Li 1.2 Ni 0.2 Mn 0.6 O 2 for lithium-ion batteries[J]. Journal of Physical Chemistry C ,2012,116(48):25242-25247. [7] Liu J L,Chen L,Hou M Y, et al . General synthesis of x Li (2) MnO (3)c enter dot (1- x ) LiMn 1/3 Ni 1/3 Co 1/3 O 2 nanomaterials by a molten-salt method:Towards a high capacity and high power cathode for rechargeable lithium batteries[J]. Journal of Materials Chemistry ,2012,22(48):25380-25387. [8] Snook G A,Huynh T D,Hollenkamp A F, et al . Rapid SECM probing of dissolution of LiCoO 2 battery materials in an ionic liquid[J]. Journal of Electroanalytical Chemistry ,2012,687:30-34. [9] Dearden C,Zhu M H,Wang B B, et al . Synthesis,size reduction,and delithiation of carbonate-free nanocrystalline lithium nickel oxide[J]. Journal of Materials Science ,2013,48(4):1740-1745. [10] Titov A A,Eremenko Z V,Goryacheva E G, et al . Synthesis,structure,and some properties of LiNi 1/3 Co 1/3 Mn 1/3 O 2 [J]. Inorganic Materials ,2013,49(2):202-208. [11] Kim S,Kim C,Jhon Y I, et al . Synthesis of layered-layered 0.5Li (2) MnO (3) center dot 0.5LiCoO (2) nanocomposite electrode materials by the mechanochemical process and first principles study[J]. Journal of Materials Chemistry ,2012,22(48):25418-25426. [12] Qiao Z,Sha O,Tang Z Y, et al . Surface modification of LiNi 0.5 Mn 1.5 O 4 by LiCoO 2 /Co 3 O 4 composite for lithium-ion batteries[J]. Materials Letters ,2012,87:176-179. [13] Ati M,Sathiya M,Boulineau S, et al . Understanding and promoting the rapid preparation of the triplite-phase of LiFeSO 4 F for use as a large-potential Fe cathode[J]. Journal of the American Chemical Society ,2012,134(44):18380-18387. [14] Habrioux A,Surble S,Berger P, et al . Nuclear microanalysis of lithium dispersion in LiFePO 4 based cathode materials for Li-ion batteries[J]. Nuclear Instruments & Methods in Physics Research Section B : Beam Interactions with Materials and Atoms ,2012,290:13-18. [15] Theil S,Fleischhammer M,Axmann P, et al . Experimental investigations on the electrochemical and thermal behavior of LiCoPO 4 -based cathode[J]. Journal of Power Sources ,2013,222:72-78. [16] Nagpure S C,Bhushan B,Babu S S. Raman and NMR studies of aged LiFePO 4 cathode[J]. Applied Surface Science ,2012,259:49-54. [17] Dimesso L,Becker D,Spanheimer C, et al . Investigation of graphitic carbon foams/LiNiPO 4 composites[J]. Journal of Solid State Electrochemistry ,2012,16(12): 3791-3798. [18] Perea A,Sougrati M T,Ionica-Bousquet C M, et al . Operando Fe-57 Mossbauer and XRD investigation of Li x Mn y Fe 1- y PO 4 /C composites ( y =0.50; 0.75)[J]. Rsc. Advances ,2012,2(25):9517-9524. [19] Devaraju M K,Tomai T,Unemoto A, et al . Novel processing of lithium manganese silicate nanomaterials for Li-ion battery applications[J]. Rsc. Advances ,2013,3(2): 608-615. [20] Liu X H,Wang J W,Huang S, et al . In situ atomic-scale imaging of electrochemical lithiation in silicon[J]. Nature Nanotechnology ,2012,7(11):749-756. [21] Nguyen H T,Zamfir M R,Duong L D, et al . Alumina-coated silicon-based nanowire arrays for high quality Li-ion battery anodes[J]. Journal of Materials Chemistry ,2012,22(47):24618-24626. [22] Hwa Y,Park C M,Sohn H J. Modified SiO as a high performance anode for Li-ion batteries[J]. Journal of Power Sources ,2013,222:129-134. [23] Hang T,Nara H,Yokoshima T, et al . Silicon composite thick film electrodeposited on a nickel micro-nanocones hierarchical structured current collector for lithium batteries[J]. Journal of Power Sources ,2013,222:503-509. [24] Iwamura S,Nishihara H,Kyotani T. Fast and reversible lithium storage in a wrinkled structure formed from Si nanoparticles during lithiation/delithiation cycling[J]. Journal of Power Sources ,2013,222:400-409. [25] Dai F,Yi R,Gordin M L, et al . Amorphous Si/SiO x /SiO 2 nanocomposites via facile scalable synthesis as anode materials for Li-ion batteries with long cycling life[J]. Rsc. Advances ,2012,2(33):12710-12713. [26] He Y,Wang Y H,Yu X Q, et al . Si-Cu thin film electrode with Kirkendall voids structure for lithium-ion batteries[J]. Journal of the Electrochemical Society ,2012,159(12):A2076-A2081. [27] Duan B C,Wang W K,Zhao H L, et al . Nano-Sn/mesoporous carbon parasitic composite as advanced anode material for lithium-ion battery[J]. Journal of the Electrochemical Society ,2012,159(12):A2092-A2095. [28] Liu B,Abouimrane A,Ren Y, et al . New anode material based on SiO-Sn x Co y C z for lithium batteries[J]. Chemistry of Materials ,2012,24(24):4653-4661. [29] Kim M,Kim J W,Sung M S, et al . Si nanocrystallites embedded in hard TiFeSi 2 matrix as an anode material for Li-ion batteries[J]. Journal of Electroanalytical Chemistry ,2012,687:84-88. [30] Kushima A,Huang J Y,Li J. Quantitative fracture strength and plasticity measurements of lithiated silicon nanowires by in situ tem tensile experiments[J]. Acs. Nano ,2012,6(11):9425-9432. [31] Ishii Y,Okamura K,Matsushita T, et al . Origin of high power performance of mesoporous carbon-TiO 2 (B) nanocomposite electrodes: An in situ synchrotron X-ray diffraction study of TiO 2 (B) electrode upon lithium insertion[J]. Materials Express ,2012,2(1):23-36. [32] Kim J C,Hwang I S,Seo S D, et al . Superior long-term cycling stability of SnO 2 nanoparticle/multiwalled carbon nanotube heterostructured electrodes for Li-ion rechargeable batteries[J]. Nanotechnology ,2012,23(46):465402. [33] Wang J Z,Du N,Wu H, et al . Order-aligned Mn 3 O 4 nanostructures as super high-rate electrodes for rechargeable lithium-ion batteries [J]. Journal of Power Sources ,2013,222:32-37. [34] Jia X L,Chen Z,Cui X, et al . Building robust architectures of carbon and metal oxide nanocrystals toward high-performance anodes for lithium-ion batteries[J]. Acs. Nano ,2012,6(11):9911-9919. [35] Wang C D,Zhang Q M,Wu Q H, et al . Facile synthesis of laminate-structured graphene sheet-Fe 3 O 4 nanocomposites with superior high reversible specific capacity and cyclic stability for lithium-ion batteries[J]. Rsc. Advances ,2012,2(28):10680-10688. [36] Chen P,Guo L,Wang Y. Graphene wrapped snco nanoparticles for high-capacity lithium ion storage[J]. Journal of Power Sources ,2013,222:526-532. [37] Marino C,Sougrati M T,Gerke B, et al . Role of structure and interfaces in the performance of TiSnSb as an electrode for Li-ion batteries[J]. Chemistry of Materials ,2012,24(24):4735-4743. [38] Shen L F,Uchaker E,Zhang X G, et al . Hydrogenated Li 4 Ti 5 O 12 nanowire arrays for high rate lithium ion batteries[J]. Advanced Materials ,2012,24(48):6502-6506. [39] Wu C Y,Wang Y X,Xie J, et al . Electrochemical performance of Li 4 Ti 5 O 12 /carbon nanofibers composite prepared by an in situ route for Li-ion batteries[J]. Journal of Solid State Electrochemistry ,2012,16(12):3915-3921. [40] Song H,Yun S W,Chun H H, et al . Anomalous decrease in structural disorder due to charge redistribution in Cr-doped Li 4 Ti 5 O 12 negative-electrode materials for high-rate Li-ion batteries[J]. Energy & Environmental Science ,2012,5(12):9903-9913. [41] Prikhodchenko P V,Gun J,Sladkevich S, et al . Conversion of hydroperoxoantimonate coated graphenes to Sb 2 S 3 @graphene for a superior lithium battery anode[J]. Chemistry of Materials ,2012,24(24):4750-4757. [42] Yuan F W,Yang H J,Tuan H Y. Alkanethiol-passivated Ge nanowires as high-performance anode materials for lithium-ion batteries:The role of chemical surface functionalization[J]. Acs. Nano ,2012,6(11):9932-9942. [43] Chen Y M,Lu Z G,Zhou L M, et al . In situ formation of hollow graphitic carbon nanospheres in electrospun amorphous carbon nanofibers for high-performance Li-based batteries[J]. Nanoscale ,2012,4(21):6800-6805. [44] Choi S,Lee J I,Park S. Patterning of electrodes for mechanically robust and bendable lithium-ion batteries[J]. Journal of Materials Chemistry ,2012,22(42):22366-22369. [45] Matsumoto K,Endo T,Katsuda K, et al . Synthesis of polycarbosilanes having a five-membered cyclic carbonate structure and their application to prepare gel polymer electrolytes for lithium ion batteries[J]. Journal of Polymer Science Part A : Polymer Chemistry ,2012,50(24):5161-5169. [46] Zhu Y,LI Y,Bettge M, et al . Positive electrode passivation by LiDFOB electrolyte additive in high-capacity lithium-ion cells[J]. Journal of the Electrochemical Society ,2012,159(12):A2109-A2117. [47] Aydin H,Senel M,Bozkurt A. PAMAM type dendritic electrolytes for lithium ion battery applications[J]. Solid State Ionics ,2012,226:1-6. [48] Basile A,Bhatt A I,O'mullane A P. A combined scanning electron micrograph and electrochemical study of the effect of chemical interaction on the cyclability of lithium electrodes in an ionic liquid electrolyte[J]. Australian Journal of Chemistry ,2012,65(11):1534-1541. [49] Gellert M,Gries K I,Yada C, et al . Grain boundaries in a lithium aluminum titanium phosphate-type fast lithium ion conducting glass ceramic: Microstructure and nonlinear ion transport properties[J]. Journal of Physical Chemistry C ,2012,116(43):22675-22678. [50] Henderson W A,Seo D M,Zhou Q, et al . An alternative ionic conductivity mechanism for plastic crystalline salt-lithium salt electrolyte mixtures[J]. Advanced Energy Materials ,2012,2(11):1343-1350. [51] Ounn R P,Kafle J,Krause F C, et al . Electrochemical analysis of Li-ion cells containing triphenyl phosphate[J]. Journal of the Electrochemical Society ,2012,159(12):A2100-A2108. [52] Takeuchi S,Yano S,Fukutsuka T, et al . Electrochemical intercalation/de-intercalation of lithium ions at graphite negative electrode in TMP-based electrolyte solution[J]. Journal of the Electrochemical Society ,2012,159(12):A2089-A2091. [53] Xu M Q,Lu D S,Garsuch A, et al . Improved performance of LiNi 0.5 Mn 1.5 O 4 cathodes with electrolytes containing dimethylmethylphosphonate (DMMP)[J]. Journal of the Electrochemical Society ,2012,159(12):A2130-A2134. [54] Cresce A V,Borodin O,Xu K. Correlating Li + solvation sheath structure with interphasial chemistry on graphite[J]. Journal of Physical Chemistry C ,2012,116(50):26111-26117. [55] Kim S K,Kim D G,Lee A, et al . Organic/inorganic hybrid block copolymer electrolytes with nanoscale ion-conducting channels for lithium ion batteries[J]. Macromolecules ,2012,45(23):9347-9356. [56] Ong S P,Mo Y F,Richards W D, et al . Phase stability,electrochemical stability and ionic conductivity of the Li 10+/- 1 MP 2 X 12 (M = Ge,Si,Sn,Al or P,and X = O,S or Se) family of superionic conductors[J]. Energy & Environmental Science ,2013,6(1):148-156. [57] Tenhaeff W E,Perry K A,Dudney N J. Impedance characterization of Li ion transport at the interface between laminated ceramic and polymeric electrolytes[J]. Journal of the Electrochemical Society ,2012,159(12):A2118-A2123. [58] Leggesse E G,Jiang J C. Theoretical study of the reductive decomposition of ethylene sulfite:A film-forming electrolyte additive in lithium ion batteries[J]. Journal of Physical Chemistry A ,2012,116(45):11025-11033. [59] Hassoun J,Jung H G,Lee D J, et al . A metal-free,lithium-ion oxygen battery:A step forward to safety in lithium-air batteries[J]. Nano Letters ,2012,12(11):5775-5779. [60] Lim H,Yilmaz E,Byon H R. Real-time XRD studies of LiO 2 electrochemical reaction in nonaqueous lithium-oxygen battery[J]. Journal of Physical Chemistry Letters ,2012,3(21):3210-3215. [61] Mccloskey B D,Scheffler R,Speidel A, et al . On the mechanism of nonaqueous LiO 2 electrochemistry on C and its kinetic overpotentials:Some implications for Li-air batteries[J]. Journal of Physical Chemistry C ,2012,116(45):23897-23905. [62] Cao Y,Wei Z K,He J, et al . alpha-MnO 2 nanorods grown in situ on graphene as catalysts for LiO 2 batteries with excellent electrochemical performance[J]. Energy & Environmental Science ,2012,5(12):9765-9768. [63] Yang Y,Shi M,Li Y S, et al . MnO 2 -graphene composite air electrode for rechargeable Li-air batteries[J]. Journal of the Electrochemical Society ,2012,159(12):A1917-A1921. [64] Oh S H,Black R,Pomerantseva E, et al . Synthesis of a metallic mesoporous pyrochlore as a catalyst for lithium-O 2 batteries[J]. Nature Chemistry ,2012,4(12):1004-1010. [65] Thotiyl M M O,Freunberger S A,Peng Z Q, et al . The carbon electrode in nonaqueous LiO 2 cells[J]. Journal of the American Chemical Society ,2013,135(1):494-500. [66] Fu Y Z,Su Y S,Manthiram A. Sulfur-carbon nanocomposite cathodes improved by an amphiphilic block copolymer for high-rate lithium-sulfur batteries[J]. Acs. Applied Materials & Interfaces ,2012,4(11):6046-6052. [67] Cai K P,Song M K,Cairns E J, et al . Nanostructured Li 2 S-C composites as cathode material for high-energy lithium/sulfur batteries[J]. Nano Letters ,2012,12(12):6474-6479. [68] Duan L,Lu J C,Liu W Y, et al . Fabrication of conductive polymer-coated sulfur composite cathode materials based on layer-by-layer assembly for rechargeable lithium-sulfur batteries[J]. Colloids and Surfaces A : Physicochemical and Engineering Aspects ,2012,414:98-103. [69] Zhang C F,Wu H B,Yuan C Z, et al . Confining sulfur in double-shelled hollow carbon spheres for lithium-sulfur batteries[J]. Angewandte Chemie-International Edition ,2012,51(38):9592-9595. [70] Lee K T,Black R,Yim T, et al . Surface-initiated growth of thin oxide coatings for Li-sulfur battery cathodes[J]. Advanced Energy Materials ,2012,2(12):1490-1496. [71] Eddahech A,Briat O,Woirgard E, et al . Remaining useful life prediction of lithium batteries in calendar ageing for automotive applications[J]. Microelectronics Reliability ,2012,52(9-10):2438-2442. [72] Marinaro M,Mancini M,Nobili F, et al . A newly designed Cu/super-P composite for the improvement of low-temperature performances of graphite anodes for lithium-ion batteries[J]. Journal of Power Sources ,2013,222:66-71. [73] Dolotko O,Senyshyn A,Muhlbauer M J, et al . Fatigue process in Li-ion cells:An in situ combined neutron diffraction and electrochemical study[J]. Journal of the Electrochemical Society ,2012,159(12):A2082-A2088. [74] Xia L,Wang D D,Yang H X, et al . An electrolyte additive for thermal shutdown protection of Li-ion batteries[J]. Electrochemistry Communications ,2012,25:98-100. [75] Lu X,Sun Y,Jian Z L, et al . New insight into the atomic structure of electrochemically delithiated O 3 -Li (1- x ) CoO 2 (0≤ x ≤0.5) nanoparticles[J]. Nano Letters ,2012,12(12):6192-6197. [76] Ferguson T R,Bazant M Z. Nonequilibrium thermodynamics of porous electrodes[J]. Journal of the Electrochemical Society ,2012,159(12):A1967-A1985. [77] Godbole V A,Hess M,Villevieille C, et al . Circular in situ neutron powder diffraction cell for study of reaction mechanism in electrode materials for Li-ion batteries[J]. Rsc. Advances ,2013,3(3):757-763. [78] Brown D,Landers R G. Control oriented thermal modeling of lithium ion batteries from a first principle model via model reduction by the global arnoldi algorithm[J]. Journal of the Electrochemical Society ,2012,159(12):A2043-A2052. [79] Gachot G,Grugeon S,Eshetu G G, et al . Thermal behaviour of the lithiated-graphite/electrolyte interface through GC/MS analysis[J]. Electrochimica Acta ,2012,83:402-409. [80] Ganesh P,Kent P R C,Jiang D E. Solid-electrolyte interphase formation and electrolyte reduction at Li-ion battery graphite anodes:Insights from first-principles molecular dynamics[J]. Journal of Physical Chemistry C ,2012,116(46):24476-24481. [81] Koyama Y,Arai H,Tanaka I, et al . Defect chemistry in layered LiMO 2 (M = Co,Ni,Mn,and Li 1/3 Mn 2/3 ) by first-principles calculations[J]. Chemistry of Materials ,2012,24(20):3886-3894. [82] Lau K C,Assary R S,Redfern P, et al . Electronic structure of lithium peroxide clusters and relevance to lithium-air batteries[J]. Journal of Physical Chemistry C ,2012,116(45):23890-23896. [83] Ling C,Mizuno F. Capture lithium in alpha MnO 2 :Insights from first principles[J]. Chemistry of Materials ,2012,24(20):3943-3951. [84] Oishi M,Fujimoto T,Takanashi Y, et al . Charge compensation mechanisms in Li 1.16 Ni 0.15 Co 0.19 Mn 0.50 O 2 positive electrode material for Li-ion batteries analyzed by a combination of hard and soft X-ray absorption near edge structure[J]. Journal of Power Sources ,2013,222:45-51. [85] Sun C H,Searles D J. Lithium storage on graphdiyne predicted by DFT calculations[J]. Journal of Physical Chemistry C ,2012,116(50):26222-26226. [86] Wu H,Cummings O T,Wick C D. Computational investigation on the effect of alumina hydration on lithium ion mobility in poly(ethylene oxide) LiClO 4 electrolytes[J]. Journal of Physical Chemistry B ,2012,116(51):14922-14932. [87] Du J C,Chen C H. Structure and lithium ion diffusion in lithium silicate glasses and at their interfaces with lithium lanthanum titanate crystals[J]. Journal of Non-Crystalline Solids ,2012,358(24):3531-3538. [88] Gallagher K G,Dees D W,Jansen A N, et al . A volume averaged approach to the numerical modeling of phase-transition intercalation electrodes presented for Li x C 6 [J]. Journal of the Electrochemical Society ,2012,159(12):A2029-A2037. [89] Liivat A. Structural changes on cycling Li 2 FeSiO 4 polymorphs from DFT calculations[J]. Solid State Ionics ,2012,228:19-24. [90] Sun Y,Lu X,Xiao R J, et al . Kinetically controlled lithium-staging in delithiated LiFePO 4 driven by the Fe center mediated interlayer Li-Li interactions[J]. Chemistry of Materials ,2012,24(24):4693-4703. [91] Yamakawa S,Yamasaki H,Koyama T, et al . Numerical study of Li diffusion in polycrystalline LiCoO 2 [J]. Journal of Power Sources ,2013,223:199-205. [92] Clark J M,Nishimura S,Yamada A, et al . High-voltage pyrophosphate cathode:Insights into local structure and lithium-diffusion pathways[J]. Angewandte Chemie-International Edition ,2012,51(52):13149-13153. [93] Geng W T,Ping D H,Nara J, et al . Formation of perpendicular graphene nanosheets on LiFePO 4 :A first-principles characterization[J]. Journal of Physical Chemistry C ,2012,116(33):17650-17656. [94] Ryou M H,Lee Je-Nam,Lee Dong Jin,Kim Wan-Keun,Jeong You Kyeong,Choi Jang Wook,Park Jung-Ki,Lee Yong Min . Effects of lithium salts on thermal stabilities of lithium alkyl carbonates in SEI layer[J]. Electrochim Acta ,2012,83:259-263. [95] Nagao M,Imade Y,Narisawa H, et al . All-solid-state Li-sulfur batteries with mesoporous electrode and thio-LiSiCoN solid electrolyte[J]. Journal of Power Sources ,2013,222:237-242. [96] Das S,Bhattacharyya A J. Time-temperature scaling of conductivity spectra of organic plastic crystalline conductors[J]. Journal of Physical Chemistry Letters ,2012,3(23):3550-3554. [97] Nokami T,Matsuo T,Inatomi Y, et al . Polymer-bound pyrene-4,5,9,10-tetraone for fast-charge and -discharge lithium-ion batteries with high capacity[J]. Journal of the American Chemical Society ,2012,134(48):19694-19700. [98] Brushett F R,Vaughey J T,Jansen A N. An all-organic non-aqueous lithium-ion redox flow battery[J]. Advanced Energy Materials ,2012,2(11): 1390-1396. [99] Mayers M Z,Kaminski J W,Miller T F. Suppression of dendrite formation via pulse charging in rechargeable lithium metal batteries[J]. Journal of Physical Chemistry C ,2012,116(50):26214-26221. [100] La Mantia F,Huggins R A,Cui Y. Oxidation processes on conducting carbon additives for lithium-ion batteries[J]. Journal of Applied Electrochemistry ,2013,43(1):1-7. |
[1] | Yingwei PEI, Hong ZHANG, Xinghui WANG. Recent advances in the electrolytes of rechargeable zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2075-2082. |
[2] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[3] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[4] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
[5] | LI Yitao, SHEN Kaier, PANG Quanquan. Advance in organics enhanced sulfide-based solid-state batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1902-1918. |
[6] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[7] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[8] | Maolin FANG, Ying ZHANG, Lin QIAO, Shumin LIU, Zhongqi CAO, Huamin ZHANG, Xiangkun MA. Research progress of iron-chromium flow batteries technology [J]. Energy Storage Science and Technology, 2022, 11(5): 1358-1367. |
[9] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
[10] | Honghui WANG, Zeqin WU, Deren CHU. Thermal behavior of lithium titanate based Li ion batteries under slight over-discharging condition [J]. Energy Storage Science and Technology, 2022, 11(5): 1305-1313. |
[11] | Zhicheng CHEN, Zongxu LI, Ling CAI, Yisi LIU. Development status and future prospects of flexible metal-air batteries [J]. Energy Storage Science and Technology, 2022, 11(5): 1401-1410. |
[12] | Xinyi WANG, Weijie LI, Chao HAN, Huakun LIU, Shixue DOU. Challenges and optimization strategies of the anode of aqueous zinc-ion battery [J]. Energy Storage Science and Technology, 2022, 11(4): 1211-1225. |
[13] | Liang FANG, Kai ZHANG, Limin ZHOU. Recent advances and prospects of electrolyte for aluminum ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1236-1245. |
[14] | Qiannan LIU, Weiping HU, Zhe HU. Research progress of phosphorus-based anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1201-1210. |
[15] | Xingxing WANG, Ziyu SONG, Hao WU, Wenfang FENG, Zhibin ZHOU, Heng ZHANG. Advances in conducting lithium salts for solid polymer electrolytes [J]. Energy Storage Science and Technology, 2022, 11(4): 1226-1235. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||