Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (6): 2127-2143.doi: 10.19799/j.cnki.2095-4239.2021.0137
• New Energy Storage Technologies • Previous Articles Next Articles
Dewang SUN(), Bizhi JIANG, Tao YUAN(), Shiyou ZHENG
Received:
2021-04-01
Revised:
2021-06-07
Online:
2021-11-05
Published:
2021-11-03
CLC Number:
Dewang SUN, Bizhi JIANG, Tao YUAN, Shiyou ZHENG. Research progress of titanium niobium oxide used as anode of lithium-ion batteries[J]. Energy Storage Science and Technology, 2021, 10(6): 2127-2143.
1 | ZHANG P C, YUAN T, PANG Y P, et al. Influence of current density on graphite anode failure in lithium-ion batteries[J]. Journal of the Electrochemical Society, 2019, 166(3): A5489-A5495. |
2 | WANG B, LUO B, LI X L, et al. The dimensionality of Sn anodes in Li-ion batteries[J]. Materials Today, 2012, 15(12): 544-552. |
3 | ROY K, WAHID M, PUTHUSSERI D, et al. High capacity, power density and cycling stability of silicon Li-ion battery anodes with a few layer black phosphorus additive[J]. Sustainable Energy & Fuels, 2019, 3(1): 245-250. |
4 | 乔荣涵, 岑官骏, 申晓宇, 等. 锂电池百篇论文点评(2020.12.1—2021.1.31)[J]. 储能科学与技术,2021, 10(2): 393-407. |
QIAO Ronghan, CEN Guanjun, SHEN Xiaoyu, et al. Reviews of selected 100 recent papers for lithium batteries(Dec 1, 2020 to Jan 31, 2021)[J]. Energy Storage Science and Technology, 2021, 10(2): 393-407. | |
5 | VIROLAINEN S, FALLAH F M, LAITINEN A, et al. Solvent extraction fractionation of Li-ion battery leachate containing Li, Ni, and Co[J]. Separation and Purification Technology, 2017, 179: 274-282. |
6 | ZHANG Y, HU M Z, YUAN M W, et al. Ordered two-dimensional porous Co3O4 nanosheets as electrocatalysts for rechargeable Li-O2 batteries[J]. Nano Research, 2019, 12(2): 299-302. |
7 | PANG Y P, WANG J, ZHOU Z G, et al. Core-shell Fe3O4@Fe ultrafine nanoparticles as advanced anodes for Li-ion batteries[J]. Journal of Alloys and Compounds, 2018, 735: 833-839. |
8 | 尹坚, 董季玲, 丁皓, 等. 锂离子电池过渡金属氧化物负极材料研究进展[J]. 储能科学与技术, 2021, 10(3): 995-1001. |
YIN Jian, DONG Jiling, DING Hao, et al. Research progress of transition metal oxide anode materials for lithium ion batteries[J]. Energy Storage Science and Technology, 2021, 10(3): 995-1001. | |
9 | YUAN T, TAN Z P, MA C R, et al. Challenges of spinel Li4Ti5O12 for lithium-ion battery industrial applications[J]. Advanced Energy Materials, 2017, 7(12): 1601625. |
10 | SALMAN M S, PARK A R, CHA M J, et al. Lysozyme-templated meso-macroporous hollow TiO2 for lithium ion battery anode[J]. ACS Applied Nano Materials, 2018, 1(2): 698-710. |
11 | HOU J, ZHANG H M, LIN J J, et al. Hollow TiO2 submicrospheres assembled by tiny nanocrystals as superior anode for lithium ion battery[J]. Journal of Materials Chemistry A, 2019, 7(41): 23733-23738. |
12 | SOTOMAYOR M E, DE LA TORRE-GAMARRA C, BUCHELI W, et al. Additive-free Li4Ti5O12 thick electrodes for Li-ion batteries with high electrochemical performance[J]. Journal of Materials Chemistry A, 2018, 6(14): 5952-5961. |
13 | AURBACH D, ZINIGRAD E, COHEN Y, et al. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions[J]. Solid State Ionics, 2002, 148: 405-416. |
14 | ZHENG Y X, XIA S X, DONG F, et al. High performance Li metal anode enabled by robust covalent triazine framework-based protective layer[J]. Advanced Functional Materials, 2020, 31(6): 2006159. |
15 | HAN J, HUANG Y H, GOODENOUGH J B. New anode framework for rechargeable lithium batteries[J]. Chemistry of Materials, 2011, 23(8): 2027-2029. |
16 | CAVA R J, MURPHY D W, ZAHURAK S M. Lithium insertion in Wadsley-Roth phases based on niobium oxide[J]. Journal of the electrochemical society, 1983, 130(12): 2345-2351. |
17 | LIN C F, YU S, WU S Q, et al. Ru0.01Ti0.99Nb2O7 as an intercalation-type anode material with a large capacity and high rate performance for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(16): 8627-8635. |
18 | WADSLEY A D. Mixed oxides of titanium and niobium. I[J]. Acta Crystallographica, 1961, 14(6): 660-664. |
19 | GRIFFITH K J, SEYMOUR I D, HOPE M A, et al. Ionic and Electronic conduction in TiNb2O7[J]. Journal of the American Chemical Society, 2019, 141(42): 16706-16725. |
20 | LIN C F, HU L, CHENG C B, et al. Nano-TiNb2O7/carbon nanotubes composite anode for enhanced lithium-ion storage[J]. Electrochimica Acta, 2018, 260: 65-72. |
21 | YANG C, DENG S J, LIN C F, et al. Porous TiNb24O62 microspheres as high-performance anode materials for lithium-ion batteries of electric vehicles[J]. Nanoscale, 2016, 8(44): 18792-18799. |
22 | GUO B K, YU X Q, SUN X G, et al. A long-life lithium-ion battery with a highly porous TiNb2O7 anode for large-scale electrical energy storage[J]. Energy & Environmental Science, 2014, 7(7): 2220-2226. |
23 | YU H X, LAN H, YAN L, et al. TiNb2O7 hollow nanofiber anode with superior electrochemical performance in rechargeable lithium ion batteries[J]. Nano Energy, 2017, 38: 109-117. |
24 | WU X Y, MIAO J, HAN W Z, et al. Investigation on Ti2Nb10O29 anode material for lithium-ion batteries[J]. Electrochemistry Communications, 2012, 25: 39-42. |
25 | HUANG H J, NIEDERBERGER M. Towards fast-charging technologies in Li+/Na+ storage: from the perspectives of pseudocapacitive materials and non-aqueous hybrid capacitors[J]. Nanoscale, 2019, 11(41): 19225-19240. |
26 | LOU S F, CHENG X Q, GAO J L, et al. Pseudocapacitive Li+ intercalation in porous Ti2Nb10O29 nanospheres enables ultra-fast lithium storage[J]. Energy Storage Materials, 2018, 11: 57-66. |
27 | AUGUSTYN V, COME J, LOWE M A, et al. High-rate electrochemical energy storage through Li+intercalation pseudocapacitance[J]. Nature Materials, 2013, 12(6): 518-522. |
28 | FU Q F, HOU J R, LU R H, et al. Electrospun Ti2Nb10O29 hollow nanofibers as high-performance anode materials for lithium-ion batteries[J]. Materials Letters, 2018, 214: 60-63. |
29 | LOU S F, MA Y L, CHENG X Q, et al. Facile synthesis of nanostructured TiNb2O7 anode materials with superior performance for high-rate lithium ion batteries[J]. Chemical Communications, 2015, 51(97): 17293-17296. |
30 | LI H S, SHEN L F, PANG G, et al. TiNb2O7 nanoparticles assembled into hierarchical microspheres as high-rate capability and long-cycle-life anode materials for lithium ion batteries[J]. Nanoscale, 2015, 7(2): 619-624. |
31 | LIU G Y, ZHAO L F, SUN R X, et al. Mesoporous TiNb2O7 microspheres as high performance anode materials for lithium-ion batteries with high-rate capability and long cycle-life[J]. Electrochimica Acta, 2018, 259: 20-27. |
32 | LOU S F, CHENG X Q, ZHAO Y, et al. Superior performance of ordered macroporous TiNb2O7 anodes for lithium ion batteries: understanding from the structural and pseudocapacitive insights on achieving high rate capability[J]. Nano Energy, 2017, 34: 15-25. |
33 | YANG C, YU S, MA Y, et al. Cr3+ and Nb5+ co-doped Ti2Nb10O29 materials for high-performance lithium-ion storage[J]. Journal of Power Sources, 2017, 360: 470-479. |
34 | CHENG Q S, LIANG J W, ZHU Y C, et al. Bulk Ti2Nb10O29 as long-life and high-power Li-ion battery anodes[J]. Journal of Materials Chemistry A, 2014, 2(41): 17258-17262. |
35 | LIU G Y, ZHAO Y Y, TANG Y F, et al. In situ Sol-gel synthesis of Ti2Nb10O29/C nanoparticles with enhanced pseudocapacitive contribution for a high-rate lithium-ion battery[J]. Rare Metals, 2020, 39(9): 1063-1071. |
36 | YU H X, CHENG X, ZHU H J, et al. Deep insights into kinetics and structural evolution of nitrogen-doped carbon coated TiNb24O62 nanowires as high-performance lithium container[J]. Nano Energy, 2018, 54: 227-237. |
37 | TANG K, MU X K, VAN AKEN P A, et al. "Nano-Pearl-String" TiNb2O7 as anodes for rechargeable lithium batteries[J]. Advanced Energy Materials, 2013, 3(1): 49-53. |
38 | FEI L, XU Y, WU X F, et al. SBA-15 confined synthesis of TiNb2O7 nanoparticles for lithium-ion batteries[J]. Nanoscale, 2013, 5(22): 11102-11107. |
39 | LI H S, SHEN L F, WANG J, et al. Three-dimensionally ordered porous TiNb2O7 nanotubes: a superior anode material for next generation hybrid supercapacitors[J]. Journal of Materials Chemistry A, 2015, 3(32): 16785-16790. |
40 | YAO Z J, XIA X H, ZHANG S Z, et al. Oxygen defect boosted N-doped Ti2Nb10O29 anchored on core-branch carbon skeleton for both high-rate liquid & solid-state lithium ion batteries[J]. Energy Storage Materials, 2020, 25: 555-562. |
41 | DENG S J, CHAO D L, ZHONG Y, et al. Vertical graphene/Ti2Nb10O29/hydrogen molybdenum bronze composite arrays for enhanced lithium ion storage[J]. Energy Storage Materials, 2018, 12: 137-144. |
42 | LIU G Y, JIN B, ZHANG R X, et al. Synthesis of Ti2Nb10O29/C composite as an anode material for lithium-ion batteries[J]. International Journal of Hydrogen Energy, 2016, 41(33): 14807-14812. |
43 | ZHU G Z, LI Q, ZHAO Y H, et al. Nanoporous TiNb2O7/C composite microspheres with three-dimensional conductive network for long-cycle-life and high-rate-capability anode materials for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(47): 41258-41264. |
44 | LI S, CAO X, SCHMIDT C N, et al. TiNb2O7/graphene composites as high-rate anode materials for lithium/sodium ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(11): 4242-4251. |
45 | LIU X D, WANG H, ZHANG S Y, et al. Design of well-defined porous Ti2Nb10O29/C microspheres assembled from nanoparticles as anode materials for high-rate lithium ion batteries[J]. Electrochimica Acta, 2018, 292: 759-768. |
46 | MAO W T, LIU K C, GUO G, et al. Preparation and electrochemical performance of Ti2Nb10O29/Ag composite as anode materials for lithium ion batteries[J]. Electrochimica Acta, 2017, 253: 396-402. |
47 | LIU G Y, LIU X D, ZHAO Y Y, et al. Synthesis of Ag-coated TiNb2O7 composites with excellent electrochemical properties for lithium-ion battery[J]. Materials Letters, 2017, 197: 38-40. |
48 | SHI K Y, ZHITOMIRSKY I. Fabrication of polypyrrole-coated carbon nanotubes using oxidant-surfactant nanocrystals for supercapacitor electrodes with high mass loading and enhanced performance[J]. ACS Applied Materials & Interfaces, 2013, 5(24): 13161-13170. |
49 | KIM H, LEE Y, BYUN D, et al. TiNb2O7 microsphere anchored by polydopamine-modified graphene oxide as a superior anode material in lithium-ion batteries[J]. International Journal of Energy Research, 2020, 44(6): 4986-4996. |
50 | JO C, KIM Y, HWANG J, et al. Block copolymer directed ordered mesostructured TiNb2O7 multimetallic oxide constructed of nanocrystals as high power Li-ion battery anodes[J]. Chemistry of Materials, 2014, 26(11): 3508-3514. |
51 | SONG H, KIM Y T. A Mo-doped TiNb2O7 anode for lithium-ion batteries with high rate capability due to charge redistribution[J]. Chemical Communications 2015, 51(48): 9849-9852. |
52 | TAKASHIMA T, TOJO T, INADA R, et al. Characterization of mixed titanium-niobium oxide Ti2Nb10O29 annealed in vacuum as anode material for lithium-ion battery[J]. Journal of Power Sources, 2015, 276: 113-119. |
53 | LEE Y S, RYU K S. Study of the lithium diffusion properties and high rate performance of TiNb6O17 as an anode in lithium secondary battery[J]. Scientific Reports, 2017, 7(1): 16617. |
54 | YUAN Y, YU H X, CHENG X, et al. Preparation of TiNb6O17 nanospheres as high-performance anode candidates for lithium-ion storage[J]. Chemical Engineering Journal, 2019, 374: 937-946. |
55 | SUN R X, TAO Y, SUN H X, et al. Simple synthesis of TiNb6O17/C composite toward high-rate lithium storage[J]. Journal of Materials Science, 2019, 54(24): 14825-14833. |
56 | WANG W L, OH B Y, PARK J Y, et al. Solid-state synthesis of Ti2Nb10O29/reduced graphene oxide composites with enhanced lithium storage capability[J]. Journal of Power Sources, 2015, 300: 272-278. |
57 | YUAN T, LUO S N, SOULE L, et al. A hierarchical Ti2Nb10O29 composite electrode for highpower lithium-ion batteries and capacitors[J]. Materials Today, 2021, 45: 8-19. |
58 | YAO M, LIU A, XING C X, et al. Asymmetric supercapacitor comprising a core-shell TiNb2O7@MoS2/C anode and a high voltage ionogel electrolyte[J]. Chemical Engineering Journal, 2020, 394. |
59 | YAO Z J, XIA X H, ZHANG Y, et al. Superior high-rate lithium-ion storage on Ti2Nb10O29 arrays via synergistic TiC/C skeleton and N-doped carbon shell[J]. Nano Energy, 2018, 54: 304-312. |
60 | SHEN S H, GUO W H, XIE D, et al. A synergistic vertical graphene skeleton and S-C shell to construct high-performance TiNb2O7-based core/shell arrays[J]. Journal of Materials Chemistry A, 2018, 6(41): 20195-20204. |
61 | LIU M, DONG H C, ZHANG S, et al. Three-dimensional porous TiNb2O7/CNT-KB composite microspheres as lithium-ion battery anode material[J]. ChemElectroChem, 2019, 6(15): 3959-3965. |
62 | BUANNIC L, COLIN J F, CHAPUIS M, et al. Electrochemical performances and gassing behavior of high surface area titanium niobium oxides[J]. Journal of Materials Chemistry A, 2016, 4(29): 11531-11541. |
63 | HE Y B, LI B H, LIU M, et al. Gassing in Li4Ti5O12-based batteries and its remedy[J]. Scientific Reports, 2012, 2(1): 913. |
64 | JIAO X Y, HAO Q L, XIA X F, et al. Boosting long-cycle-life energy storage with holey graphene supported TiNb2O7 network nanostructure for lithium ion hybrid supercapacitors[J]. Journal of Power Sources, 2018, 403: 66-75. |
65 | WANG X F, SHEN G Z. Intercalation pseudo-capacitive TiNb2O7@carbon electrode for high-performance lithium ion hybrid electrochemical supercapacitors with ultrahigh energy density[J]. Nano Energy, 2015, 15: 104-115. |
[1] | Shunmin YI, Linbo XIE, Li PENG. Remaining useful life prediction of lithium-ion batteries based on VF-DW-DFN [J]. Energy Storage Science and Technology, 2022, 11(7): 2305-2315. |
[2] | Qingwei ZHU, Xiaoli YU, Qichao WU, Yidan XU, Fenfang CHEN, Rui HUANG. Semi-empirical degradation model of lithium-ion battery with high energy density [J]. Energy Storage Science and Technology, 2022, 11(7): 2324-2331. |
[3] | Yuzuo WANG, Jin WANG, Yinli LU, Dianbo RUAN. Study on the effects of pore structure on lithium-storage performances for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(7): 2023-2029. |
[4] | Wei KONG, Jingtao JIN, Xipo LU, Yang SUN. Study on cooling performance of lithium ion batteries with symmetrical serpentine channel [J]. Energy Storage Science and Technology, 2022, 11(7): 2258-2265. |
[5] | YAN Qiaoyi, WU Feng, CHEN Renjie, LI Li. Recovery and resource recycling of graphite anode materials for spent lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1760-1771. |
[6] | WANG Yuzuo, DENG Miao, WANG Jin, YANG Bin, LU Yinli, JIN Ge, RUAN Dianbo. Study on the effects of carbonization temperature on lithium-storage kinetics for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(6): 1715-1724. |
[7] | YU Chunhui, HE Ziying, ZHANG Chenxi, LIN Xianqing, XIAO Zhexi, WEI Fei. The analyses and suppressing strategies of silicon anode with the electrolyte [J]. Energy Storage Science and Technology, 2022, 11(6): 1749-1759. |
[8] | WANG Can, MA Pan, ZHU Guoliang, WEI Shuimiao, YANG Zhilu, ZHANG Zhiyu. Effect of lithium acrylic-coated nature graphite on its electrochemical properties [J]. Energy Storage Science and Technology, 2022, 11(6): 1706-1714. |
[9] | LIU Hangxin, CHEN Xiantao, SUN Qiang, ZHAO Chenxi. Cycle performance characteristics of soft pack lithium-ion batteries under vacuum environment [J]. Energy Storage Science and Technology, 2022, 11(6): 1806-1815. |
[10] | Jun WANG, Lin RUAN, Yanliang QIU. Research progress on rapid heating methods for lithium-ion battery in low-temperature [J]. Energy Storage Science and Technology, 2022, 11(5): 1563-1574. |
[11] | Zhenkai HU, Bo LEI, Yongqi LI, Youjie SHI, Qikai LEI, Zhipeng HE. Comparative study on safety test and evaluation methods of lithium-ion batteries for energy storage [J]. Energy Storage Science and Technology, 2022, 11(5): 1650-1656. |
[12] | Guangyu CHENG, Xinwei LIU, Yueni MEI, Honghui GU, Cheng YANG, Ke WANG. Capacity fading analysis of lithium-ion battery after high temperature storage [J]. Energy Storage Science and Technology, 2022, 11(5): 1339-1349. |
[13] | Yanwen DAI, Aiqing YU. Combined CNN-LSTM and GRU based health feature parameters for lithium-ion batteries SOH estimation [J]. Energy Storage Science and Technology, 2022, 11(5): 1641-1649. |
[14] | Chunjing LIN, Danhua LI, Haoran WEN, Tianyi MA, Hong CHANG, Peixiang CHANG, Haiqiang LI, Shiqiang LIU. Research on swelling force characteristics of power battery during charging [J]. Energy Storage Science and Technology, 2022, 11(5): 1627-1633. |
[15] | Qiaomin KE, Jian GUO, Yiwei WANG, Wenjiong CAO, Man CHEN, Fangming JIANG. The effect of liquid-cooled thermal management on thermal runaway of power battery [J]. Energy Storage Science and Technology, 2022, 11(5): 1634-1640. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||