Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (1): 246-252.doi: 10.19799/j.cnki.2095-4239.2021.0252
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Xiang WANG1(), Jing XU1(), Xinwen CHEN2, Yajun DING3, Xin XU1
Received:
2021-06-07
Revised:
2021-06-25
Online:
2022-01-05
Published:
2022-01-10
Contact:
Jing XU
E-mail:549253463@qq.com;jingxu@yzu.edu.cn
CLC Number:
Xiang WANG, Jing XU, Xinwen CHEN, Yajun DING, Xin XU. Refined thermodynamic simulation of lithium battery based on VCHTC[J]. Energy Storage Science and Technology, 2022, 11(1): 246-252.
1 | 金标, 姜斌, 刘方方, 等. 车用动力锂电池产热特性分析与优化[J]. 储能科学与技术, 2018, 7(1): 128-134. |
JIN B, JIANG B, LIU F F, et al. Thermal characteristic analysis and optimization for vehicle power lithium battery[J]. Energy Storage Science and Technology, 2018, 7(1): 128-134. | |
2 | 周天念, 吴传平, 陈宝辉. 加热引发三元18650型锂离子电池组的燃烧特性[J]. 储能科学与技术, 2021, 10(2): 558-564. |
ZHOU T N, WU C P, CHEN B H. Burning characteristics of the 18650-type lithium-ion ternary battery pack induced by heating[J]. Energy Storage Science and Technology, 2021, 10(2): 558-564. | |
3 | 雷治国, 张承宁, 李军求. 电动车辆用锂离子电池热特性研究[J]. 电源学报, 2014, 12(4): 83-87, 92. |
LEI Z G, ZHANG C N, LI J Q. Research on thermal characteristics of EVs lithium-ion battery[J]. Journal of Power Supply, 2014, 12(4): 83-87, 92. | |
4 | 杨东辉, 吴贤章, 王羽平, 等. 锂离子电池电化学仿真技术综述[J]. 储能科学与技术, 2021, 10(3): 1060-1070. |
YANG D H, WU X Z, WANG Y P, et al. Review of lithium-ion battery electrochemical simulation technology[J]. Energy Storage Science and Technology, 2021, 10(3): 1060-1070. | |
5 | 胡广, 廖承林, 张文杰. 车用锂离子电池热失控研究综述[J]. 电工电能新技术, 2021, 40(2): 66-80. |
HU G, LIAO C L, ZHANG W J. A review on thermal runaway of lithium-ion batteries for electric vehicle[J]. Advanced Technology of Electrical Engineering and Energy, 2021, 40(2): 66-80. | |
6 | BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A general energy balance for battery systems[J]. Journal of the Electrochemical Society, 1985, 132(1): 5-12. |
7 | CHEN S C, WAN C C, WANG Y Y. Thermal analysis of lithium-ion batteries[J]. Journal of Power Sources, 2005, 140(1): 111-124. |
8 | HALLAJ S, MALEKI H, HONG J S, et al. Thermal modeling and design considerations of lithium-ion batteries[J]. Journal of Power Sources, 1999, 83(1/2): 1-8. |
9 | LIU S H, LIU X L, DOU R F, et al. Experimental and simulation study on thermal characteristics of 18650 lithium-iron-phosphate battery with and without spot-welding tabs[J]. Applied Thermal Engineering, 2020, 166: doi: 10.1016/j.applthermaleng.2019.114648. |
10 | CHACKO S, CHUNG Y M. Thermal modelling of Li-ion polymer battery for electric vehicle drive cycles[J]. Journal of Power Sources, 2012, 213: 296-303. |
11 | JAGUEMONT J, OMAR N, ABDEL-MONEM M, et al. Fast-charging investigation on high-power and high-energy density pouch cells with 3D-thermal model development[J]. Applied Thermal Engineering, 2018, 128: 1282-1296. |
12 | BERCKMANS G, RONSMANS J, JAGUEMONT J, et al. Lithium-ion capacitor: Analysis of thermal behavior and development of three-dimensional thermal model[J]. Journal of Electrochemical Energy Conversion and Storage, 2017, 14(4): doi: 10.1115/1.4037491. |
13 | ZHAO R, LIU J, GU J J. The effects of electrode thickness on the electrochemical and thermal characteristics of lithium ion battery[J]. Applied Energy, 2015, 139: 220-229. |
14 | JEON D H, BAEK S M. Thermal modeling of cylindrical lithium ion battery during discharge cycle[J]. Energy Conversion and Management, 2011, 52(8/9): 2973-2981. |
15 | RAO Z H, HUO Y T, LIU X J. Experimental study of an OHP-cooled thermal management system for electric vehicle power battery[J]. Experimental Thermal and Fluid Science, 2014, 57: 20-26. |
16 | DAMAY N, FORGEZ C, BICHAT M P, et al. A method for the fast estimation of a battery entropy-variation high-resolution curve—Application on a commercial LiFePO4/graphite cell[J]. Journal of Power Sources, 2016, 332: 149-153. |
17 | 丁亚军, 徐晶, 丁凡, 等. 圆柱锂电池表面自然对流换热系数仿真估算[J]. 电源技术, 2020, 44(9): 1256-1259. |
DING Y J, XU J, DING F, et al. Simulation and estimation of natural convection heat transfer coefficient on surface of cylindrical lithium ion batteries[J]. Chinese Journal of Power Sources, 2020, 44(9): 1256-1259. | |
18 | 吴学红, 马西锋, 王于曹, 等. 环境温度与对流换热系数对电池散热性能的影响研究[J]. 低温与超导, 2019, 47(6): 67-72. |
WU X H, MA X F, WANG Y C, et al. The effect of ambient temperature and convection heat transfer coefficient on the heat dissipation performance of the battery[J]. Cryogenics & Superconductivity, 2019, 47(6): 67-72. |
[1] | Shunmin YI, Linbo XIE, Li PENG. Remaining useful life prediction of lithium-ion batteries based on VF-DW-DFN [J]. Energy Storage Science and Technology, 2022, 11(7): 2305-2315. |
[2] | Qingwei ZHU, Xiaoli YU, Qichao WU, Yidan XU, Fenfang CHEN, Rui HUANG. Semi-empirical degradation model of lithium-ion battery with high energy density [J]. Energy Storage Science and Technology, 2022, 11(7): 2324-2331. |
[3] | Yuzuo WANG, Jin WANG, Yinli LU, Dianbo RUAN. Study on the effects of pore structure on lithium-storage performances for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(7): 2023-2029. |
[4] | Wei KONG, Jingtao JIN, Xipo LU, Yang SUN. Study on cooling performance of lithium ion batteries with symmetrical serpentine channel [J]. Energy Storage Science and Technology, 2022, 11(7): 2258-2265. |
[5] | YAN Qiaoyi, WU Feng, CHEN Renjie, LI Li. Recovery and resource recycling of graphite anode materials for spent lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1760-1771. |
[6] | WANG Yuzuo, DENG Miao, WANG Jin, YANG Bin, LU Yinli, JIN Ge, RUAN Dianbo. Study on the effects of carbonization temperature on lithium-storage kinetics for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(6): 1715-1724. |
[7] | YU Chunhui, HE Ziying, ZHANG Chenxi, LIN Xianqing, XIAO Zhexi, WEI Fei. The analyses and suppressing strategies of silicon anode with the electrolyte [J]. Energy Storage Science and Technology, 2022, 11(6): 1749-1759. |
[8] | WANG Can, MA Pan, ZHU Guoliang, WEI Shuimiao, YANG Zhilu, ZHANG Zhiyu. Effect of lithium acrylic-coated nature graphite on its electrochemical properties [J]. Energy Storage Science and Technology, 2022, 11(6): 1706-1714. |
[9] | LIU Hangxin, CHEN Xiantao, SUN Qiang, ZHAO Chenxi. Cycle performance characteristics of soft pack lithium-ion batteries under vacuum environment [J]. Energy Storage Science and Technology, 2022, 11(6): 1806-1815. |
[10] | Guangyu CHENG, Xinwei LIU, Yueni MEI, Honghui GU, Cheng YANG, Ke WANG. Capacity fading analysis of lithium-ion battery after high temperature storage [J]. Energy Storage Science and Technology, 2022, 11(5): 1339-1349. |
[11] | Yanwen DAI, Aiqing YU. Combined CNN-LSTM and GRU based health feature parameters for lithium-ion batteries SOH estimation [J]. Energy Storage Science and Technology, 2022, 11(5): 1641-1649. |
[12] | Chunjing LIN, Danhua LI, Haoran WEN, Tianyi MA, Hong CHANG, Peixiang CHANG, Haiqiang LI, Shiqiang LIU. Research on swelling force characteristics of power battery during charging [J]. Energy Storage Science and Technology, 2022, 11(5): 1627-1633. |
[13] | Qiaomin KE, Jian GUO, Yiwei WANG, Wenjiong CAO, Man CHEN, Fangming JIANG. The effect of liquid-cooled thermal management on thermal runaway of power battery [J]. Energy Storage Science and Technology, 2022, 11(5): 1634-1640. |
[14] | Zhenkai HU, Bo LEI, Yongqi LI, Youjie SHI, Qikai LEI, Zhipeng HE. Comparative study on safety test and evaluation methods of lithium-ion batteries for energy storage [J]. Energy Storage Science and Technology, 2022, 11(5): 1650-1656. |
[15] | Jun WANG, Lin RUAN, Yanliang QIU. Research progress on rapid heating methods for lithium-ion battery in low-temperature [J]. Energy Storage Science and Technology, 2022, 11(5): 1563-1574. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||