Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (2): 511-520.doi: 10.19799/j.cnki.2095-4239.2021.0375
• Energy Storage Materials and Devices • Previous Articles Next Articles
Yunqi GUO(), Nan SHENG, Chunyu ZHU(), Zhonghao RAO
Received:
2021-07-26
Revised:
2021-09-02
Online:
2022-02-05
Published:
2022-02-08
Contact:
Yunqi GUO,Chunyu ZHU
E-mail:guoyunqi@cumt.edu.cn;zcyls@cumt.edu.cn
CLC Number:
Yunqi GUO, Nan SHENG, Chunyu ZHU, Zhonghao RAO. Preparation of Al2O3 fibers using a template method, and the investigation of the thermal properties of paraffin phase-change composite[J]. Energy Storage Science and Technology, 2022, 11(2): 511-520.
Table 3
Summarized phase change parameters of the PCMs"
样品 | 循环 次数 | 融化过程 | 凝固过程 | ||
---|---|---|---|---|---|
Tmp/℃ | ΔHm/(J/g) | Tsp/℃ | ΔHs/(J/g) | ||
S20-1200-PW15 | 10 | 55.3 | 179.7 | 50.7 | 175.3 |
30 | 55.3 | 182.1 | 50.6 | 176.9 | |
50 | 55.3 | 180.0 | 50.7 | 177.0 | |
100 | 55.3 | 180. 5 | 50.7 | 177.6 | |
S20-1200-PW30 | 10 | 54.5 | 112.1 | 49.8 | 110.1 |
30 | 54.5 | 112.4 | 49.8 | 110.2 | |
50 | 54.5 | 112.0 | 49.8 | 110.0 | |
100 | 54.5 | 112.0 | 50.9 | 109.6 | |
S20-1200-PW45 | 10 | 53.8 | 95.0 | 49.8 | 94.5 |
30 | 54.1 | 95.9 | 49.7 | 95.1 | |
50 | 54.1 | 96.3 | 49.8 | 95.1 | |
100 | 53.7 | 95.8 | 49.7 | 95.1 | |
纯石蜡 | 1 | 56.1 | 192.0 | 50.7 | 191.4 |
1 | TAHAN LATIBARI S, SADRAMELI S M. Carbon based material included-shaped stabilized phase change materials for sunlight-driven energy conversion and storage: An extensive review[J]. Solar Energy, 2018, 170: 1130-1161. |
2 | MOHAMED S A, AL-SULAIMAN F A, IBRAHIM N I, et al. A review on current status and challenges of inorganic phase change materials for thermal energy storage systems[J]. Renewable and Sustainable Energy Reviews, 2017, 70: 1072-1089. |
3 | KENISARIN M, MAHKAMOV K. Passive thermal control in residential buildings using phase change materials[J]. Renewable and Sustainable Energy Reviews, 2016, 55: 371-398. |
4 | 凌子夜, 张正国, 方晓明, 等. 不同复合相变材料用于电子器件控温性能的研究[J]. 工程热物理学报, 2015, 36(1): 147-150. |
LING Z Y, ZHANG Z G, FANG X M, et al. Performances of a thermal management system using different phase change materials on a simulative electronic chip[J]. Journal of Engineering Thermophysics, 2015, 36(1): 147-150. | |
5 | 崔艳琦. 相变材料热性能及其在室内被动式储能系统的简易计算[J]. 储能科学与技术, 2017, 6(2): 302-306. |
CUI Y Q. Thermal properties of phase change materials(PCM) and their concise calculations for passive storage applications in buildings[J]. Energy Storage Science and Technology, 2017, 6(2): 302-306. | |
6 | 张佳利, 丁宇, 曲丽洁, 等. 石蜡/膨胀石墨复合相变储热单元的放热性能[J]. 储能科学与技术, 2019, 8(1): 108-115. |
ZHANG J L, DING Y, QU L J, et al. Discharge performance of a thermal energy storage unit with paraffin-expanded graphite composite phase change materials[J]. Energy Storage Science and Technology, 2019, 8(1): 108-115. | |
7 | 吴熠, 张超, 凌子夜, 等. 石蜡/SEBS复合相变材料热疗鼻贴的研究[J]. 储能科学与技术, 2021, 10(4): 1285-1291. |
WU Y, ZHANG C, LING Z Y, et al. Developing thermal therapy nasal strip based on paraffin/SEBS composite phase change material[J]. Energy Storage Science and Technology, 2021, 10(4): 1285-1291. | |
8 | 曹建军, 王俊, 张利勇, 等. 蓄热技术对可再生能源分布式能源系统的效益分析[J]. 储能科学与技术, 2021, 10(1): 385-392. |
CAO J J, WANG J, ZHANG L Y, et al. Benefit analysis of heat storage technology applied to distributed energy system with renewable energy[J]. Energy Storage Science and Technology, 2021, 10(1): 385-392. | |
9 | 刘丽辉, 莫雅菁, 孙小琴, 等. 纳米增强型复合相变材料的传热特性[J]. 储能科学与技术, 2020, 9(4): 1105-1112. |
LIU L H, MO Y J, SUN X Q, et al. Thermal behavior of the nanoenhanced phase change materials[J]. Energy Storage Science and Technology, 2020, 9(4): 1105-1112. | |
10 | 尤若波. 相变材料在动力电池热管理中的应用研究[J]. 储能科学与技术, 2017, 6(5): 1148-1157. |
YOU R B. A study of phase-change material application in lithium-ion power battery thermal management[J]. Energy Storage Science and Technology, 2017, 6(5): 1148-1157. | |
11 | 向欢欢, 陈观生, 张仁元, 等. 金属/相变储热材料的导热性研究进展[J]. 储能科学与技术, 2014, 3(5): 520-525. |
XIANG H H, CHEN G S, ZHANG R Y, et al. Thermal conductivity of metal-phase change materials—A review[J]. Energy Storage Science and Technology, 2014, 3(5): 520-525. | |
12 | 张怡秋, 程傲, 李小波. 基于Na2HPO4·12H2O相变储能热管理的储热过程研究[J]. 储能科学与技术, 2018, 7(2): 282-287. |
ZHANG Y Q, CHENG A, LI X B. Thermal management based on Na2HPO4·12H2O phase change heat storage[J]. Energy Storage Science and Technology, 2018, 7(2): 282-287. | |
13 | 马预谱, 胡锦炎, 陈奇, 等. 金属材料增强的石蜡储热性能研究[J]. 工程热物理学报, 2016, 37(10): 2196-2201. |
MA Y P, HU J Y, CHEN Q, et al. Study on heat storage performance enhancement of paraffin by metallic material[J]. Journal of Engineering Thermophysics, 2016, 37(10): 2196-2201. | |
14 | 马炳倩, 李建强, 彭志坚, 等. 石蜡基复合相变储热材料的导热性能[J]. 储能科学与技术, 2012, 1(2): 131-138. |
MA B Q, LI J Q, PENG Z J, et al. Paraffin based composite phase change materials for thermal energy storage: Thermal conductivity enhancement[J]. Energy Storage Science and Technology, 2012, 1(2): 131-138. | |
15 | ZHANG S, FENG D L, SHI L, et al. A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage[J]. Renewable and Sustainable Energy Reviews, 2021, 135: doi: 10.1016/j.rser.2020.110127. |
16 | 徐众, 侯静, 万书权, 等. 金属泡沫/石蜡复合相变材料的制备及热性能研究[J]. 储能科学与技术, 2020, 9(1): 109-116. |
XU Z, HOU J, WAN S Q, et al. Preparation and thermal properties of metal foam/paraffin composite phase change materials[J]. Energy Storage Science and Technology, 2020, 9(1): 109-116. | |
17 | 万倩, 何露茜, 何正斌, 等. 泡沫铁/石蜡复合相变储能材料放热过程及其热量传递规律[J]. 储能科学与技术, 2020, 9(4): 1098-1104. |
WAN Q, HE L X, HE Z B, et al. Exothermic process and heat transfer of iron foam/paraffin composite phase change energy storage materials[J]. Energy Storage Science and Technology, 2020, 9(4): 1098-1104. | |
18 | 万倩, 肖浩南, 钱京, 等. 泡沫铁对石蜡相变储热过程的影响[J]. 储能科学与技术, 2020, 9(1): 94-100. |
WAN Q, XIAO H N, QIAN J, et al. Influence of iron foam on paraffin phase change heat storage process[J]. Energy Storage Science and Technology, 2020, 9(1): 94-100. | |
19 | LIU Z Y, ZANG C Y, JU Z C, et al. Consistent preparation, chemical stability and thermal properties of a shape-stabilized porous carbon/paraffin phase change materials[J]. Journal of Cleaner Production, 2020, 247: doi: 10.1016/j.jclepro.2019.1195655. |
20 | 王静静, 徐小亮, 梁凯彦, 等. 多孔基定形复合相变材料传热性能提升研究进展[J]. 工程科学学报, 2020, 42(1): 26-38. |
WANG J J, XU X L, LIANG K Y, et al. Thermal conductivity enhancement of porous shape-stabilized composite phase change materials for thermal energy storage applications: A review[J]. Chinese Journal of Engineering, 2020, 42(1): 26-38. | |
21 | 陶璋, 伍玲梅, 张亚飞, 等. 生物质多孔碳基复合相变材料制备及性能[J]. 工程科学学报, 2020, 42(1): 113-119. |
TAO Z, WU L M, ZHANG Y F, et al. Preparation and properties of biomass porous carbon composite phase change materials[J]. Chinese Journal of Engineering, 2020, 42(1): 113-119. | |
22 | ZHU X, WANG Q, KANG S G, et al. Coal-based ultrathin-wall graphitic porous carbon for high-performance form-stable phase change materials with enhanced thermal conductivity[J]. Chemical Engineering Journal, 2020, 395: 125112. |
23 | 王海民, 王寓非, 胡峰. 石墨-石蜡复合相变材料的圆柱型动力电池组热管理性能[J]. 储能科学与技术, 2021, 10(1): 210-217. |
WANG H M, WANG Y F, HU F. Thermal management performance of cylindrical power batteries made of graphite paraffin composite phase change materials[J]. Energy Storage Science and Technology, 2021, 10(1): 210-217. | |
24 | 张佳利, 丁宇, 曲丽洁, 等. 石蜡/膨胀石墨复合相变储热单元的放热性能[J]. 储能科学与技术, 2019, 8(1): 108-115. |
ZHANG J L, DING Y, QU L J, et al. Discharge performance of a thermal energy storage unit with paraffin-expanded graphite composite phase change materials[J]. Energy Storage Science and Technology, 2019, 8(1): 108-115. | |
25 | 林肯, 许肖永, 李强, 等. 石蜡-膨胀石墨复合相变材料热导率研究[J]. 化工学报, 2021, 72(8): 4425-4432. |
LIN K, XU X Y, LI Q, et al. Study on thermal conductivity of paraffin-expanded graphite composite phase change materials[J]. CIESC Journal, 2021, 72(8): 4425-4432. | |
26 | SUN K Y, KOU Y, ZHANG Y W, et al. Photo-triggered hierarchical porous carbon-based composite phase-change materials with superior thermal energy conversion capacity[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(8): 3445-3453. |
27 | ATINAFU D G, DONG W J, WANG C, et al. Synthesis of porous carbon from cotton using an Mg(OH)2 template for form-stabilized phase change materials with high encapsulation capacity, transition enthalpy and reliability[J]. Journal of Materials Chemistry A, 2018, 6(19): 8969-8977. |
28 | WANG C J, LIANG W D, YANG Y Y, et al. Biomass carbon aerogels based shape-stable phase change composites with high light-to-thermal efficiency for energy storage[J]. Renewable Energy, 2020, 153: 182-192. |
29 | WANG C J, LIANG W D, TANG Z Q, et al. Enhanced light-thermal conversion efficiency of mixed clay base phase change composites for thermal energy storage[J]. Applied Clay Science, 2020, 189: doi: 10.1016/j.clay.2020.105535. |
30 | CHENG L, FENG J C. Form-stable phase change materials based on delignified wood flour for thermal management of buildings[J]. Composites Part A: Applied Science and Manufacturing, 2020, 129: doi: 10.1016/j.compositesa.2019.105690. |
31 | LI S M, WANG Y L, MA M G, et al. Microwave-assisted method for the synthesis of cellulose-based composites and their thermal transformation to Mn2O3[J]. Industrial Crops and Products, 2013, 43: 751-756. |
32 | CHEN H Y, GINZBURG V V, YANG J, et al. Thermal conductivity of polymer-based composites: Fundamentals and applications[J]. Progress in Polymer Science, 2016, 59: 41-85. |
[1] | Guohui FENG, Tianyu WANG, Gang WANG. A simulation analysis on the effect of encapsulation mode on the heat storage and release performance of phase change water tank [J]. Energy Storage Science and Technology, 2022, 11(7): 2161-2176. |
[2] | Zhongbo LI, Jingxiao HAN, Chengcheng WANG, Hui YANG, Na YANG, Shaowu YIN, Li WANG, Lige TONG, Zhiwei TANG, Yulong DING. Simulation and the parameter influence relationship of the discharging process in a thermochemical reactor [J]. Energy Storage Science and Technology, 2022, 11(7): 2133-2140. |
[3] | WU Xiaoling, ZHOU Tao, LIU Yuzhao, DU Yanping, CHEN Huiping, LI Shun. Numerical study on cooling enhancement of micro devices by designing turbulence based hollow micro pin-fin arrays with lateral holes [J]. Energy Storage Science and Technology, 2022, 11(6): 1980-1987. |
[4] | Na YANG, Chengcheng WANG, Hui YANG, Zhihao HU, Lige TONG, Zhongbo LI, Li WANG, Yulong DING, Na LI. Non-isothermal kinetics calculation and heat storage performance analysis of silica gel based on thermochemical reaction [J]. Energy Storage Science and Technology, 2022, 11(5): 1331-1338. |
[5] | Yongxue ZHANG, Zixi WANG, Bohui LU, Shengqi YANG, Hongyu ZHAO. Enhancement of charging and discharging performance of a latent-heat thermal-energy storage unit using snowflake-shaped fins [J]. Energy Storage Science and Technology, 2022, 11(2): 521-530. |
[6] | Zhao DU, Kang YANG, Gao SHU, Pan WEI, Xiaohu YANG. Experimental Study on the Heat Storage and Release of the Solid-Liquid Phase Change in Metal-Foam-Filled Tube [J]. Energy Storage Science and Technology, 2022, 11(2): 531-537. |
[7] | Qingmeng WANG, Zhi LIU, Xiaomin CHENG, Qianju CHENG, Zean LYU. Effect of In on high-temperature corrosion properties of Sn-Bi-Zn heat transfer and heat storage alloy [J]. Energy Storage Science and Technology, 2022, 11(1): 9-18. |
[8] | Hongzhang ZHU, Chuanping WU, Tiannian ZHOU, Jie DENG. Thermal runaway characteristics of LiFePO4 and ternary lithium batteries with external overheating [J]. Energy Storage Science and Technology, 2022, 11(1): 201-210. |
[9] | Xiang WANG, Jing XU, Xinwen CHEN, Yajun DING, Xin XU. Refined thermodynamic simulation of lithium battery based on VCHTC [J]. Energy Storage Science and Technology, 2022, 11(1): 246-252. |
[10] | Shitan ZHANG, Shuai CHU, Weichun GE, Yinxuan LI, Chuang LIU. Evaluation method for the coordinated regulation of large-scale abandoned wind power and heat storage [J]. Energy Storage Science and Technology, 2022, 11(1): 283-290. |
[11] | Boya ZHANG, Bohong LIU, Yuanhang LI, Xin LIU, Qianfeng CHEN, Sanying HOU. Binary oxide modified catalyst preparation and self-humidifying performance [J]. Energy Storage Science and Technology, 2021, 10(6): 2013-2019. |
[12] | Guoliang XU, Yujie ZHANG, Xiaoming HUANG, Rui HE. Thermal design and operation strategy of automotive lithium battery based on critical heat transfer coefficient and intervention time [J]. Energy Storage Science and Technology, 2021, 10(6): 2252-2259. |
[13] | Wei WU, Shoucheng LI, Weian XIE. Experimental study on the influence of fin parameters on heat transfer of PCM based radiator [J]. Energy Storage Science and Technology, 2021, 10(6): 2303-2311. |
[14] | Hui WANG, Jun LI, Peiwang ZHU, Jian WANG, Chunlin ZHANG. Hundred-megawatt molten salt heat storage system for deep peak shaving of thermal power plant [J]. Energy Storage Science and Technology, 2021, 10(5): 1760-1767. |
[15] | Xianrong ZHANG, Yujie XU, Lijun YANG, Lexuan LI, Haisheng CHEN, Xuezhi ZHOU. Performance analysis and comparison of multi-type thermal power-heat storage coupling systems [J]. Energy Storage Science and Technology, 2021, 10(5): 1565-1578. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||