Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (2): 503-510.doi: 10.19799/j.cnki.2095-4239.2021.0383
• Energy Storage Materials and Devices • Previous Articles Next Articles
Linhui JIA1,2(), Zejia GAI3, Moxi LI3, Huagen LIANG1,2()
Received:
2021-08-02
Revised:
2021-08-25
Online:
2022-02-05
Published:
2022-02-08
Contact:
Huagen LIANG
E-mail:1320817491@qq.com;lianghg@cumt.edu.cn
CLC Number:
Linhui JIA, Zejia GAI, Moxi LI, Huagen LIANG. Research progress of MOFs and their derivatives as cathode catalysts for Li-O2 batteries[J]. Energy Storage Science and Technology, 2022, 11(2): 503-510.
1 | YU H H, LIU D P, FENG X L, et al. Mini review: Recent advances on flexible rechargeable Li-air batteries[J]. Energy & Fuels, 2021, 35(6): 4751-4761. |
2 | ZHANG P, DING M J, LI X X, et al. Challenges and strategy on parasitic reaction for high-performance nonaqueous lithium-oxygen batteries[J]. Advanced Energy Materials, 2020, 10(40): doi: 10. 1002/aenm.202001789. |
3 | WANG H F, WANG X X, LI M L, et al. Porous materials applied in nonaqueous Li-O2 batteries: Status and perspectives[J]. Advanced Materials, 2020, 32(44): doi: 10.1002/adma.202002559. |
4 | LIU T, VIVEK J P, ZHAO E W, et al. Current challenges and routes forward for nonaqueous lithium-air batteries[J]. Chemical Reviews, 2020, 120(14): 6558-6625. |
5 | KWAK W J, ROSY, SHARON D, et al. Lithium-oxygen batteries and related systems: Potential, status, and future[J]. Chemical Reviews, 2020, 120(14): 6626-6683. |
6 | KANG J H, LEE J, JUNG J W, et al. Lithium-air batteries: Air-breathing challenges and perspective[J]. ACS Nano, 2020, 14(11): 14549-14578. |
7 | 黄俊, 彭章泉. 锂-氧电池在几个关键科学问题上的最新进展[J]. 储能科学与技术, 2018, 7(2): 167-174. |
HUANG J, PENG Z Q. Progress in key scientific issues of Li-O2 batteries[J]. Energy Storage Science and Technology, 2018, 7(2): 167-174. | |
8 | BAE Y, PARK H, KO Y, et al. Bifunctional oxygen electrocatalysts for lithium-oxygen batteries[J]. Batteries & Supercaps, 2019, 2(4): doi: 10.1002/batt.201900039. |
9 | WANG Y J, FANG B Z, ZHANG D, et al. A review of carbon-composited materials as air-electrode bifunctional electrocatalysts for metal-air batteries[J]. Electrochemical Energy Reviews, 2018, 1(1): 1-34. |
10 | 朱子岳, 符冬菊, 陈建军, 等. 锌空气电池非贵金属双功能阴极催化剂研究进展[J]. 储能科学与技术, 2020, 9(5): 1489-1496. |
ZHU Z Y, FU D J, CHEN J J, et al. Research progress of non-precious metal bifunctional cathode electrocatalysts for zinc-air batteries[J]. Energy Storage Science and Technology, 2020, 9(5): 1489-1496. | |
11 | JUNG J W, CHO S H, NAM J S, et al. Current and future cathode materials for non-aqueous Li-air (O2) battery technology—A focused review[J]. Energy Storage Materials, 2020, 24: 512-528. |
12 | BALAISH M, JUNG J W, KIM I D, et al. A critical review on functionalization of air-cathodes for nonaqueous Li-O2 batteries[J]. Advanced Functional Materials, 2020, 30(18): doi: 10.1002/adfm. 201808303. |
13 | ZHOU Y, YAN D F, GU Q F, et al. Implanting cation vacancies in Ni-Fe LDHs for efficient oxygen evolution reactions of lithium-oxygen batteries[J]. Applied Catalysis B: Environmental, 2021, 285: doi: 10.1016/j.apcatb.2020.119792. |
14 | SONG K F, AI W, ZHANG Y, et al. Three-dimensional self-supported CuCo2O4 nanowires@NiO nanosheets core/shell arrays as an oxygen electrode catalyst for Li-O2 batteries[J]. Journal of Materials Chemistry A, 2021, 9(5): 3007-3017. |
15 | HE B, LI G Y, LI J J, et al. MoSe2@CNT core-shell nanostructures as grain promoters featuring a direct Li2O2 formation/decomposition catalytic capability in lithium-oxygen batteries[J]. Advanced Energy Materials, 2021, 11(18): doi: 10.1002/aenm.202003263. |
16 | LIANG H G, JIA L H, CHEN F. Three-dimensional self-standing Co@NC octahedron/biochar cathode for non-aqueous Li-O2 batteries: Efficient catalysis for reversible formation and decomposition of LiOH[J]. Journal of Materials Science, 2020, 55(18): 7792-7804. |
17 | LIANG H G, GONG X, JIA L H, et al. Highly efficient Li-O2 batteries based on self-standing NiFeP@NC/BC cathode derived from biochar supported Prussian blue analogues[J]. Journal of Electroanalytical Chemistry, 2020, 867: doi: 10.1016/j.jelechem. 2020.114124. |
18 | LIANG H G, CHEN F, ZHANG M S, et al. Highly performing free standing cathodic electrocatalysts for Li-O2 batteries: CoNiO2 nanoneedle arrays supported on N-doped carbon nanonet[J]. Applied Catalysis A: General, 2019, 574: 114-121. |
19 | JING S Y, ZHANG Y L, CHEN F, et al. Novel and highly efficient cathodes for Li-O2 batteries: 3D self-standing NiFe@NC-functionalized N-doped carbon nanonet derived from Prussian blue analogues/biomass composites[J]. Applied Catalysis B: Environmental, 2019, 245: 721-732. |
20 | XIA H, XIE Q F, TIAN Y H, et al. High-efficient CoPt/activated functional carbon catalyst for Li-O2 batteries[J]. Nano Energy, 2021, 84: doi: 10.1016/j.nanoen.2021.105877. |
21 | DONG H Y, TANG P P, WANG X R, et al. Pt/NiO microsphere composite as efficient multifunctional catalysts for nonaqueous lithium-oxygen batteries and alkaline fuel cells: The synergistic effect of Pt and Ni[J]. ACS Applied Materials & Interfaces, 2019, 11(43): 39789-39797. |
22 | ZHU X D, SHANG Y, LU Y C, et al. A free-standing biomass-derived RuO2/N-doped porous carbon cathode towards highly performance lithium-oxygen batteries[J]. Journal of Power Sources, 2020, 471: doi: 10.1016/j.jpowsour.2020.228444. |
23 | ZHAO L Y, XING Y, CHEN N, et al. A robust cathode of RuO2 nH2O clusters anchored on the carbon nanofibers for ultralong-life lithium-oxygen batteries[J]. Journal of Power Sources, 2020, 463: doi: 10.1016/j.jpowsour.2020.228161. |
24 | 黄澍, 王玮, 王康丽, 等. 石墨烯在化学储能中的研究进展[J]. 储能科学与技术, 2014, 3(2): 85-95. |
HUANG S, WANG W, WANG K L, et al. Recent progress about graphene for chemical energy storage applications[J]. Energy Storage Science and Technology, 2014, 3(2): 85-95. | |
25 | JING S Y, ZHANG M S, LIANG H G, et al. Facile synthesis of 3D binder-free N-doped carbon nanonet derived from silkworm cocoon for Li-O2 battery[J]. Journal of Materials Science, 2018, 53(6): 4395-4405. |
26 | NAM J S, JUNG J W, YOUN D Y, et al. Free-standing carbon nanofibers protected by a thin metallic iridium layer for extended life-cycle Li-oxygen batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(50): 55756-55765. |
27 | WEI M H, LI B, JIN C, et al. A 3D free-standing thin film based on N, P-codoped hollow carbon fibers embedded with MoP quantum dots as high efficient oxygen electrode for Li-O2 batteries[J]. Energy Storage Materials, 2019, 17: 226-233. |
28 | LIU T, HUANG T, YU A S. Rational design of a hierarchical N-doped graphene-supported catalyst for highly energy-efficient lithium-oxygen batteries[J]. Journal of Materials Chemistry A, 2019, 7(34): 19745-19752. |
29 | LIU J, LI D, ZHANG S Q, et al. Hierarchical N-doped carbon nanocages/carbon textiles as a flexible O2 electrode for Li-O2 batteries[J]. Journal of Energy Chemistry, 2020, 46: 94-98. |
30 | LI S H, WANG M L, YAO Y, et al. Effect of the activation process on the microstructure and electrochemical properties of N-doped carbon cathodes in Li-O2 batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(38): 34997-35004. |
31 | BANERJEE R, PHAN A, WANG B, et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture[J]. Science, 2008, 319(5865): 939-943. |
32 | RODENAS T, LUZ I, PRIETO G, et al. Metal-organic framework nanosheets in polymer composite materials for gas separation[J]. Nature Materials, 2015, 14(1): 48-55. |
33 | WANG C, XIE Z G, DEKRAFFT K E, et al. Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis[J]. Journal of the American Chemical Society, 2011, 133(34): 13445-13454. |
34 | ZHAO S L, WANG Y, DONG J C, et al. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution[J]. Nature Energy, 2016, 1: doi: 10.1038/nenergy.2016.184. |
35 | KORNIENKO N, ZHAO Y B, KLEY C S, et al. Metal-organic frameworks for electrocatalytic reduction of carbon dioxide[J]. Journal of the American Chemical Society, 2015, 137(44): 14129-14135. |
36 | YUAN H Y, ALJNEIBI S A A A, YUAN J R, et al. ZnO nanosheets abundant in oxygen vacancies derived from metal-organic frameworks for ppb-level gas sensing[J]. Advanced Materials, 2019, 31(11): doi: 10.1002/adma.201807161. |
37 | TAJIK S, BEITOLLAHI H, GARKANI NEJAD F, et al. Performance of metal-organic frameworks in the electrochemical sensing of environmental pollutants[J]. Journal of Materials Chemistry A, 2021, 9(13): 8195-8220. |
38 | MENDECKI L, MIRICA K A. Conductive metal-organic frameworks as ion-to-electron transducers in potentiometric sensors[J]. ACS Applied Materials & Interfaces, 2018, 10(22): 19248-19257. |
39 | WANG T Z, CAO X J, JIAO L F. MOFs-derived carbon-based metal catalysts for energy-related electrocatalysis[J]. Small, 2021, 17(22): doi: 10.1002/smll.202004398. |
40 | WANG K X, HUI K N, HUI K S, et al. Recent progress in metal-organic framework/graphene-derived materials for energy storage and conversion: Design, preparation, and application[J]. Chemical Science, 2021, 12(16): 5737-5766. |
41 | LIANG Z B, QIU T J, GAO S, et al. Multi-scale design of metal-organic framework-derived materials for energy electrocatalysis[J]. Advanced Energy Materials, 2021: doi: 10.1002/aenm.202003410. |
42 | ZHONG M, KONG L J, ZHAO K, et al. Recent progress of nanoscale metal-organic frameworks in synthesis and battery applications[J]. Advanced Science, 2021, 8(4): doi: 10.1002/advs. 202001980. |
43 | WANG H F, CHEN L Y, PANG H, et al. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions[J]. Chemical Society Reviews, 2020, 49(5): 1414-1448. |
44 | JIANG Z L, SUN H, SHI W K, et al. Co3O4 nanocage derived from metal-organic frameworks: An excellent cathode catalyst for rechargeable Li-O2 battery[J]. Nano Research, 2019, 12(7): 1555-1562. |
45 | WANG Q, WANG X F, HE H R. Integrated 3D foam-like porous Ni3S2 as improved deposition support for high-performance Li-O2 battery[J]. Journal of Power Sources, 2020, 448: doi: 10.1016/j.jpowsour.2020.227397. |
46 | HE M L, JIA J, SUN Q, et al. Hollow N-doped carbon sphere synthesized by MOF as superior oxygen electrocatalyst for Li-O2 batteries[J]. International Journal of Energy Research, 2021, 45(5): 7120-7128. |
47 | LI J, DENG Y J, LENG L M, et al. MOF-Templated sword-like Co3O4@NiCo2O4 sheet arrays on carbon cloth as highly efficient Li-O2 battery cathode[J]. Journal of Power Sources, 2020, 450: doi: 10.1016/j.jpowsour.2020.227725. |
48 | MENG X K, LIAO K M, DAI J, et al. Ultralong cycle life Li-O2 battery enabled by a MOF-derived ruthenium-carbon composite catalyst with a durable regenerative surface[J]. ACS Applied Materials & Interfaces, 2019, 11(22): 20091-20097. |
49 | WANDT J, JAKES P, GRANWEHR J, et al. Singlet oxygen formation during the charging process of an aprotic lithium-oxygen battery[J]. Angewandte Chemie International Edition, 2016, 55(24): 6892-6895. |
50 | OTTAKAM THOTIYL M M, FREUNBERGER S A, PENG Z Q, et al. The carbon electrode in nonaqueous Li-O2 cells[J]. Journal of the American Chemical Society, 2013, 135(1): 494-500. |
51 | MCCLOSKEY B D, BETHUNE D S, SHELBY R M, et al. Limitations in rechargeability of Li-O2 batteries and possible origins[J]. The Journal of Physical Chemistry Letters, 2012, 3(20): 3043-3047. |
52 | MAHNE N, SCHAFZAHL B, LEYPOLD C, et al. Singlet oxygen generation as a major cause for parasitic reactions during cycling of aprotic lithium-oxygen batteries[J]. Nature Energy, 2017, 2: doi: 10.1038/nenergy.2017.36. |
53 | YANG S X, HE P, ZHOU H S. Exploring the electrochemical reaction mechanism of carbonate oxidation in Li-air/CO2 battery through tracing missing oxygen[J]. Energy & Environmental Science, 2016, 9(5): 1650-1654. |
54 | ZHAO Z W, HUANG J, PENG Z Q. Achilles' heel of lithium-air batteries: Lithium carbonate[J]. Angewandte Chemie International Edition, 2018, 57(15): 3874-3886. |
55 | XU S M, LAU S, ARCHER L A. CO2 and ambient air in metal-oxygen batteries: Steps towards reality[J]. Inorganic Chemistry Frontiers, 2015, 2(12): 1070-1079. |
56 | ZHANG H B, LIU G G, SHI L, et al. Single-atom catalysts: Emerging multifunctional materials in heterogeneous catalysis[J]. Advanced Energy Materials, 2018, 8(1): doi: 10.1002/aenm.201701343. |
57 | GAWANDE M B, ARIGA K, YAMAUCHI Y. Single-atom catalysts[J]. Small, 2021, 17(16): doi: 10.1002/smll.202101584. |
58 | ZHANG Q Q, GUAN J Q. Single-atom catalysts for electrocatalytic applications[J]. Advanced Functional Materials, 2020, 30(31): doi: 10.1002/j.adfm.202000768. |
59 | YE C L, ZHANG N Q, WANG D S, et al. Single atomic site catalysts: Synthesis, characterization, and applications[J]. Chemical Communications (Cambridge, England), 2020, 56(56): 7687-7697. |
60 | CHENG N C, STAMBULA S, DA WANG, et al. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction[J]. Nature Communications, 2016, 7: doi: 10.1038/ncomms13638. |
61 | CHEN Y J, JI S F, CHEN C, et al. Single-atom catalysts: Synthetic strategies and electrochemical applications[J]. Joule, 2018, 2(7): 1242-1264. |
62 | HUANG H G, SHEN K, CHEN F F, et al. Metal-organic frameworks as a good platform for the fabrication of single-atom catalysts[J]. ACS Catalysis, 2020, 10(12): 6579-6586. |
63 | ZOU L L, WEI Y S, HOU C C, et al. Single-atom catalysts derived from metal-organic frameworks for electrochemical applications[J]. Small, 2021, 17(16): doi: 10.1002/smll.202004809. |
64 | XI J B, JUNG H S, XU Y, et al. Synthesis strategies, catalytic applications, and performance regulation of single-atom catalysts[J]. Advanced Functional Materials, 2021, 31(12): doi: 10.1002/j.adfm. 202008318. |
65 | YILMAZ G, PEH S B, ZHAO D, et al. Atomic- and molecular-level design of functional metal-organic frameworks (MOFs) and derivatives for energy and environmental applications[J]. Advanced Science, 2019, 6(21): doi: 10.1002/advs.201901129. |
66 | HU X L, LUO G, ZHAO Q N, et al. Ru single atoms on N-doped carbon by spatial confinement and ionic substitution strategies for high-performance Li-O2 batteries[J]. Journal of the American Chemical Society, 2020, 142(39): 16776-16786. |
67 | CHEN S R, CUI M, YIN Z H, et al. Single-atom and dual-atom electrocatalysts derived from metal organic frameworks: Current progress and perspectives[J]. ChemSusChem, 2021, 14(1): 73-93. |
68 | SUN T T, XU L B, WANG D S, et al. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion[J]. Nano Research, 2019, 12(9): 2067-2080. |
69 | WU D F, GUO Z Y, YIN X B, et al. Metal-organic frameworks as cathode materials for Li-O2 batteries[J]. Advanced Materials, 2014, 26(20): 3258-3262. |
70 | SATO T, HAMADA Y, SUMIKAWA M, et al. Solubility of oxygen in organic solvents and calculation of the Hansen solubility parameters of oxygen[J]. Industrial & Engineering Chemistry Research, 2014, 53(49): 19331-19337. |
71 | YAN W J, GUO Z Y, XU H S, et al. Downsizing metal-organic frameworks with distinct morphologies as cathode materials for high-capacity Li-O2 batteries[J]. Materials Chemistry Frontiers, 2017, 1(7): 1324-1330. |
72 | HU X F, ZHU Z Q, CHENG F Y, et al. Micro-nano structured Ni-MOFs as high-performance cathode catalyst for rechargeable Li-O2 batteries[J]. Nanoscale, 2015, 7(28): 11833-11840. |
73 | YUAN M W, WANG R, FU W B, et al. Ultrathin two-dimensional metal-organic framework nanosheets with the inherent open active sites as electrocatalysts in aprotic Li-O2 batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(12): 11403-11413. |
74 | KIM S H, LEE Y J, KIM D H, et al. Bimetallic metal-organic frameworks as efficient cathode catalysts for Li-O2 batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(1): 660-667. |
75 | XIE L S, SKORUPSKII G, DINCĂ M. Electrically conductive metal-organic frameworks[J]. Chemical Reviews, 2020, 120(16): 8536-8580. |
76 | ZHAO S H, WU H H, LI Y L, et al. Core-shell assembly of carbon nanofibers and a 2D conductive metal-organic framework as a flexible free-standing membrane for high-performance supercapacitors[J]. Inorganic Chemistry Frontiers, 2019, 6(7): 1824-1830. |
77 | WU H, ZHANG W L, KANDAMBETH S, et al. Conductive metal-organic frameworks selectively grown on laser-scribed graphene for electrochemical microsupercapacitors[J]. Advanced Energy Materials, 2019, 9(21): doi: 10.1002/j.aenm.201900482. |
78 | HUANG H, ZHAO Y, BAI Y M, et al. Conductive metal-organic frameworks with extra metallic sites as an efficient electrocatalyst for the hydrogen evolution reaction[J]. Advanced Science, 2020, 7(9): 2000012. |
79 | XIONG W, CHENG X, WANG T, et al. Co3(hexahydroxytriphenylene)2: A conductive metal-organic framework for ambient electrocatalytic N2 reduction to NH3[J]. Nano Research, 2020, 13(4): 1008-1012. |
80 | SHI X F, HUA R, XU Y L, et al. Trimetallic conductive metal-organic frameworks as precatalysts for the oxygen evolution reaction with enhanced activity[J]. Sustainable Energy & Fuels, 2020, 4(9): 4589-4597. |
81 | WU F, FANG W, YANG X Y, et al. Two-dimensional π-conjugated metal-organic framework with high electrical conductivity for electrochemical sensing[J]. Journal of the Chinese Chemical Society, 2019, 66(5): 522-528. |
82 | SHINDE S S, LEE C H, JUNG J Y, et al. Unveiling dual-linkage 3D hexaiminobenzene metal-organic frameworks towards long-lasting advanced reversible Zn-air batteries[J]. Energy & Environmental Science, 2019, 12(2): 727-738. |
83 | SHINDE S S, LEE C H, YU J Y, et al. Hierarchically designed 3D holey C2 N aerogels as bifunctional oxygen electrodes for flexible and rechargeable Zn-air batteries[J]. ACS Nano, 2018, 12(1): 596-608. |
84 | PAN N, ZHANG H, YANG B, et al. Conductive MOFs as bifunctional oxygen electrocatalysts for all-solid-state Zn-air batteries[J]. Chemical Communications, 2020, 56(88): 13615-13618. |
85 | KO M, MENDECKI L, MIRICA K A. Conductive two-dimensional metal-organic frameworks as multifunctional materials[J]. Chemical Communications, 2018, 54(57): 7873-7891. |
86 | HMADEH M, LU Z, LIU Z, et al. New porous crystals of extended metal-catecholates[J]. Chemistry of Materials, 2012, 24(18): 3511-3513. |
[1] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[2] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[3] | ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. |
[4] | ZHANG Yan, WANG Hai, LIU Zhaomeng, ZHANG Deliu, WANG Jiadong, LI Jianzhong, GAO Xuanwen, LUO Wenbin. Research progress of nickel-rich ternary cathode material ncm for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1693-1705. |
[5] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[6] | Zhicheng CHEN, Zongxu LI, Ling CAI, Yisi LIU. Development status and future prospects of flexible metal-air batteries [J]. Energy Storage Science and Technology, 2022, 11(5): 1401-1410. |
[7] | Chang SUN, Zerong DENG, Ningbo JIANG, Lulu ZHANG, Hui FANG, Xuelin YANG. Recent research progress of sodium vanadium fluorophosphate as cathode material for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1184-1200. |
[8] | Haiyan HU, Shulei CHOU, Yao XIAO. Layered oxide cathode materials based on molecular orbital hybridization for high voltage sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1093-1102. |
[9] | Chunlin YU, Xudong CHEN, Toshio MIYAGAWA, Hui SUN, Xingwang ZHANG, Lige TONG. Precursor with special structure for improving the performance of the ternary cathode material of Li-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 1000-1007. |
[10] | Miao WU, Guiqing ZHAO, Zhongzhu QIU, Baofeng WANG. Preparation and electrochemical properties of NiCo2O4 as a novel cathode material for aqueous zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 1019-1025. |
[11] | Guanjun CEN, Jing ZHU, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Mengyu TIAN, Feng TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Dec. 1, 2021 to Jan. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(3): 1077-1092. |
[12] | Suting WENG, Zepeng LIU, Gaojing YANG, Simeng ZHANG, Xiao ZHANG, Qiu FANG, Yejing LI, Zhaoxiang WANG, Xuefeng WANG, Liquan CHEN. Cryogenic electron microscopy (cryo-EM) characterizing beam-sensitive materials in lithium metal batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 760-780. |
[13] | Zhongmin REN, Bin WANG, Shuaishuai CHEN, Hua LI, Zhenlian CHEN, Deyu WANG. Mechanics-induced degradation on layer-structured cathodes and remedies to address it [J]. Energy Storage Science and Technology, 2022, 11(3): 948-956. |
[14] | Mengyu TIAN, Jing ZHU, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Feng TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries(Oct. 1, 2021 to Nov. 30, 2021) [J]. Energy Storage Science and Technology, 2022, 11(1): 297-312. |
[15] | Penghui LI, Caiwen WU, Jianpeng REN, Wenjuan WU. Research progress of lignin as electrode materials for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(1): 66-77. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||